
ARM11 MPCore™ Processor
Revision: r2p0

Technical Reference Manual
Copyright © 2005, 2006, 2008. All rights reserved.
ARM DDI 0360F

ARM11 MPCore Processor
Technical Reference Manual

Copyright © 2005, 2006, 2008. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and
other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Figure 13-1 on page 13-2 reprinted with permission from IEEE Std. 1149.1-1990, IEEE Standard Test Access
Port and Boundary-Scan Architecture Copyright 2002, 2003, by IEEE. The IEEE disclaims any responsibility
or liability resulting from the placement and use in the described manner.

Some material in this document is based on IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Std 754-1985. The IEEE disclaims any responsibility or liability resulting from the placement and use in the
described manner.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Change history

Date Issue Confidentiality Change

02 February 2005 A Non-Confidential First release for r0p1

14 September 2005 B Non-Confidential First release for r0p2

16 December 2005 C Non-Confidential First release for r0p3

11 August 2006 D Non-Confidential First release for r1p0

14 February 2008 E Non-Confidential Second release for r1p0

15 October 2008 F Non-Confidential Unrestricted Access First release for r2p0
ii Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. iii
Unrestricted Access Non-Confidential

iv Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Contents
ARM11 MPCore Processor Technical Reference
Manual

Preface
About this book .. xxvi
Feedback .. xxxii

Chapter 1 Introduction
1.1 About the processor .. 1-2
1.2 Extensions to ARMv6 .. 1-4
1.3 MP11 CPU overview ... 1-5
1.4 Debug and programming support ... 1-13
1.5 Power management .. 1-18
1.6 Configurable options ... 1-20
1.7 Pipeline stages .. 1-22
1.8 Typical pipeline operations ... 1-24
1.9 MPCore architecture with Jazelle technology ... 1-30
1.10 Parity checking support ... 1-32
1.11 Product revisions .. 1-33

Chapter 2 Programmers Model
2.1 About the programmers model .. 2-2
2.2 Processor operating states ... 2-3
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. v
Unrestricted Access Non-Confidential

Contents
2.3 Instruction length .. 2-4
2.4 Data types .. 2-5
2.5 Memory formats .. 2-6
2.6 Addresses in an MPCore system ... 2-8
2.7 Operating modes .. 2-10
2.8 Registers .. 2-11
2.9 The program status registers .. 2-17
2.10 Exceptions .. 2-24

Chapter 3 Control Coprocessor CP15
3.1 About control coprocessor CP15 .. 3-2
3.2 CP15 registers arranged by function .. 3-3
3.3 Summary of control coprocessor CP15 registers and operations 3-6
3.4 Register descriptions .. 3-11
3.5 Summary of CP15 instructions ... 3-77

Chapter 4 Unaligned and Mixed-Endian Data Access Support
4.1 About unaligned and mixed-endian support ... 4-2
4.2 Unaligned access support .. 4-3
4.3 Unaligned data access specification .. 4-7
4.4 Operation of unaligned accesses ... 4-18
4.5 Mixed-endian access support ... 4-22
4.6 Instructions to reverse bytes in a general-purpose register 4-25
4.7 Instructions to change the CPSR E bit ... 4-26

Chapter 5 Memory Management Unit
5.1 About the MMU ... 5-2
5.2 TLB organization .. 5-4
5.3 Memory access sequence .. 5-7
5.4 Enabling and disabling the MMU .. 5-9
5.5 Memory access control ... 5-11
5.6 Memory region attributes .. 5-16
5.7 Memory attributes and types .. 5-21
5.8 MMU aborts .. 5-31
5.9 MMU fault checking .. 5-33
5.10 Fault status and address .. 5-38
5.11 Hardware page table translation ... 5-40
5.12 MMU descriptors .. 5-48
5.13 MMU software-accessible registers .. 5-59
5.14 MMU and Write Buffer .. 5-64

Chapter 6 Program Flow Prediction
6.1 About program flow prediction .. 6-2
6.2 Branch prediction .. 6-4
6.3 Return stack ... 6-8
6.4 Memory Barriers ... 6-9
vi Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Contents
Chapter 7 Level 1 Memory System
7.1 Coherency protocol ... 7-2
7.2 About the Level 1 data side memory system .. 7-3
7.3 About the Level 1 instruction side memory system 7-10
7.4 TLB organization ... 7-11

Chapter 8 Level 2 Memory System
8.1 MPCore Level 2 interface ... 8-2
8.2 L2 exclusive mode .. 8-6
8.3 Synchronization operations ... 8-7
8.4 The ACLKEN signal .. 8-9

Chapter 9 MPCore Private Memory Region
9.1 About the MPCore private memory region .. 9-2
9.2 Timer and watchdog blocks .. 9-15

Chapter 10 MPCore Distributed Interrupt Controller
10.1 About the Distributed Interrupt Controller .. 10-2
10.2 Terminology .. 10-3
10.3 Interrupt Distributor ... 10-4
10.4 CPU interrupt interfaces .. 10-9
10.5 Interrupt Distributor Registers ... 10-10
10.6 CPU Interrupt Interface Registers ... 10-20

Chapter 11 Clocking, Resets, and Power Management
11.1 Clocking .. 11-2
11.2 Reset ... 11-3
11.3 Reset modes ... 11-4
11.4 About power consumption control ... 11-6
11.5 Individual MP11 CPU power control ... 11-7
11.6 IEM support ... 11-11
11.7 Debug ... 11-13

Chapter 12 Debug
12.1 Debug systems ... 12-2
12.2 About the debug unit ... 12-4
12.3 Debug registers ... 12-6
12.4 CP14 registers reset ... 12-25
12.5 CP14 debug instructions ... 12-26
12.6 Debug events .. 12-29
12.7 Debug exception ... 12-33
12.8 Debug state ... 12-35
12.9 Debug communications channel ... 12-39
12.10 Debugging in a system with TLBs ... 12-40
12.11 Monitor debug-mode debugging ... 12-41
12.12 Halting debug-mode debugging .. 12-47
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. vii
Unrestricted Access Non-Confidential

Contents
12.13 External signals .. 12-49

Chapter 13 Debug Test Access Port
13.1 Debug Test Access Port and Halting debug-mode 13-2
13.2 Synchronizing RealView ICE .. 13-3
13.3 Entering debug state .. 13-4
13.4 Exiting debug state ... 13-5
13.5 DBGTAP controller overview .. 13-6
13.6 Debug registers .. 13-8
13.7 Using the Debug Test Access Port ... 13-23
13.8 Debug sequences ... 13-33
13.9 Programming debug events ... 13-47
13.10 Monitor debug-mode debugging ... 13-49

Chapter 14 Trace Interface Port
14.1 About the ETM interface ... 14-2

Chapter 15 Cycle Timings and Interlock Behavior
15.1 About cycle timings and interlock behavior .. 15-3
15.2 Register interlock examples ... 15-8
15.3 Data processing instructions .. 15-9
15.4 QADD, QDADD, QSUB, and QDSUB instructions 15-12
15.5 ARMv6 media data processing ... 15-13
15.6 ARMv6 Sum of Absolute Differences (SAD) .. 15-15
15.7 Multiplies ... 15-16
15.8 Branches .. 15-18
15.9 Processor state updating instructions ... 15-19
15.10 Single load and store instructions ... 15-20
15.11 Load and store double instructions ... 15-23
15.12 Load and store multiple instructions ... 15-25
15.13 RFE and SRS instructions .. 15-28
15.14 Synchronization instructions ... 15-29
15.15 Coprocessor instructions .. 15-30
15.16 SWI, BKPT, Undefined, and Prefetch Aborted instructions 15-31
15.17 Thumb instructions ... 15-32

Chapter 16 Introduction to VFP
16.1 About the VFP11 coprocessor .. 16-2
16.2 Applications .. 16-3
16.3 Coprocessor interface .. 16-4
16.4 VFP11 coprocessor pipelines ... 16-5
16.5 Modes of operation ... 16-12
16.6 Short vector instructions ... 16-15
16.7 Parallel execution of instructions .. 16-16
16.8 VFP11 treatment of branch instructions ... 16-17
16.9 Writing optimal VFP11 code ... 16-18
viii Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Contents
16.10 VFP11 revision information ... 16-19

Chapter 17 VFP Register File
17.1 About the register file .. 17-2
17.2 Register file internal formats ... 17-3
17.3 Decoding the register file .. 17-5
17.4 Loading operands from MPCore registers .. 17-6
17.5 Maintaining consistency in register precision .. 17-8
17.6 Data transfer between memory and VFP11 registers 17-9
17.7 Access to register banks in CDP operations ... 17-11

Chapter 18 VFP Programmers Model
18.1 About the programmers model .. 18-2
18.2 Compliance with the IEEE 754 standard ... 18-3
18.3 ARMv5TE coprocessor extensions ... 18-10
18.4 VFP11 system registers .. 18-16

Chapter 19 VFP Instruction Execution
19.1 About instruction execution ... 19-2
19.2 Serializing instructions .. 19-3
19.3 Interrupting the VFP11 coprocessor ... 19-4
19.4 Forwarding .. 19-5
19.5 Hazards ... 19-7
19.6 Operation of the scoreboards ... 19-8
19.7 Data hazards in full-compliance mode .. 19-15
19.8 Data hazards in RunFast mode .. 19-19
19.9 Resource hazards ... 19-20
19.10 Parallel execution .. 19-23
19.11 Execution timing .. 19-25

Chapter 20 VFP Exception Handling
20.1 About exception processing .. 20-2
20.2 Bounced instructions ... 20-3
20.3 Support code ... 20-5
20.4 Exception processing .. 20-8
20.5 Input Subnormal exception ... 20-14
20.6 Invalid Operation exception .. 20-15
20.7 Division by Zero exception .. 20-18
20.8 Overflow exception ... 20-19
20.9 Underflow exception ... 20-21
20.10 Inexact exception .. 20-23
20.11 Input exceptions .. 20-24
20.12 Arithmetic exceptions .. 20-25

Appendix A Signal Descriptions
A.1 AXI interface signals ... A-2
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. ix
Unrestricted Access Non-Confidential

Contents
A.2 Interrupt lines .. A-8
A.3 Debug interface .. A-9
A.4 MBIST interface .. A-10
A.5 Power control interface ... A-11
A.6 Miscellaneous signals ... A-13
A.7 Scan test signals .. A-15
A.8 ETM interface signals ... A-16
A.9 Parity signals .. A-18

Appendix B AC Characteristics
B.1 MPCore timing .. B-2
B.2 MPCore signal timing parameters .. B-3

Appendix C MBIST Controller and Dispatch Unit
C.1 About MBIST .. C-2
C.2 MBIST controller and MBIST dispatch unit ... C-4
C.3 MBIST controller ... C-5
C.4 MBIST dispatch unit ... C-6
C.5 MBIST signal descriptions .. C-7
C.6 Shift register and fail datalog format ... C-12
C.7 Fail data log .. C-14
C.8 Testing RAM ... C-15
C.9 Testing MP11 CPU RAMs .. C-17
C.10 Testing MP11 SCU RAM .. C-24
C.11 Test patterns ... C-26

Appendix D Scan chain ordering with RVI
D.1 Scan chain ordering with RVI ... D-2

Appendix E IEM
E.1 Purpose of IEM ... E-2
E.2 About AXI register slices .. E-4

Appendix F Revisions

Glossary
x Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

List of Tables
ARM11 MPCore Processor Technical Reference
Manual

Change history .. ii
Table 1-1 Double-precision VFP operations ... 1-15
Table 1-2 Flush-to-zero mode ... 1-16
Table 1-3 Configurable options for the ARM11 MPCore processor .. 1-20
Table 1-4 Default configuration for the ARM11 MPCore processor .. 1-20
Table 2-1 Address types in an MPCore system .. 2-8
Table 2-2 Register mode identifiers .. 2-12
Table 2-3 GE[3:0] settings ... 2-19
Table 2-4 PSR mode bit values ... 2-22
Table 2-5 Exception entry and exit .. 2-25
Table 2-6 Configuration of exception vector address locations ... 2-32
Table 2-7 Exception vectors .. 2-33
Table 3-1 CP15 register functions ... 3-3
Table 3-2 Summary of CP15 registers and operations ... 3-6
Table 3-3 Main ID Register bit functions ... 3-11
Table 3-4 Cache Type Register bit functions .. 3-12
Table 3-5 TLB Type Register bit functions .. 3-14
Table 3-6 ID_PFRO bit functions .. 3-16
Table 3-7 ID_PFR1 bit functions ... 3-17
Table 3-8 Debug Feature Register 0 bit functions ... 3-18
Table 3-9 Memory Model Feature Register 0 bit functions ... 3-18
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. xi
Unrestricted Access Non-Confidential

List of Tables
Table 3-10 ID_MMFR1 bit functions ... 3-20
Table 3-11 ID_MMFR2 bit functions ... 3-21
Table 3-12 ID_MMFR3 bit functions ... 3-22
Table 3-13 Instruction Set Attributes Register 0 bit functions ... 3-24
Table 3-14 Instruction Set Attributes Register 1 bit functions ... 3-25
Table 3-15 Instruction Set Attributes Register 2 bit functions ... 3-26
Table 3-16 Instruction Set Attributes Register 3 bit functions ... 3-27
Table 3-17 Instruction Set Attributes Register 4 bit functions ... 3-28
Table 3-18 CFGEND, EE, U, and E bit values .. 3-29
Table 3-19 Endianness and alignment control options ... 3-30
Table 3-20 Control Register bit functions .. 3-30
Table 3-21 Auxiliary Control Register bit functions ... 3-33
Table 3-22 Coprocessor access rights ... 3-36
Table 3-23 Translation Table Base Register 0 bit functions ... 3-37
Table 3-24 Translation Table Base Register 1 bit functions ... 3-38
Table 3-25 Values of N for Translation Table Base Register 0 ... 3-40
Table 3-26 Encoding of domain bits in CP15 c3 ... 3-41
Table 3-27 Data Fault Status Register bit functions ... 3-42
Table 3-28 Instruction Fault Status Register bit functions .. 3-43
Table 3-29 Cache operation functions .. 3-47
Table 3-30 Bit fields for Set/Way operations using CP15 c7 .. 3-49
Table 3-31 Cache size and S parameter dependency .. 3-49
Table 3-32 PA Register bit functions .. 3-53
Table 3-33 TLB Operations Register instructions ... 3-54
Table 3-34 CRm values for TLB Operations Register .. 3-54
Table 3-35 Primary remapping encodings .. 3-59
Table 3-36 Inner or outer region type encodings .. 3-60
Table 3-37 Fields for primary region remap .. 3-60
Table 3-38 Fields for normal memory region remap ... 3-61
Table 3-39 Default memory regions when MMU is disabled .. 3-62
Table 3-40 Performance Monitor Control Register bit functions ... 3-67
Table 3-41 Performance monitoring events .. 3-68
Table 3-42 Main TLB debug operations .. 3-70
Table 3-43 TLB Debug Control Register bit functions .. 3-71
Table 3-44 TLB lockdown operations ... 3-72
Table 3-45 TLB VA Register bit functions ... 3-73
Table 3-46 TLB PA Register bit functions ... 3-74
Table 3-47 TLB Attributes Register bit functions .. 3-75
Table 3-48 Upper subpage permissions ... 3-75
Table 3-49 CP15 instruction summary .. 3-77
Table 4-1 Unaligned access handling ... 4-4
Table 4-2 Memory access type descriptions ... 4-18
Table 4-3 Unalignment fault occurrence

when access behavior is architecturally unpredictable ... 4-19
Table 4-4 Mixed-endian configuration ... 4-24
Table 4-5 EE bit, U bit, and E bit settings ... 4-24
Table 5-1 Access permission bits encoding .. 5-12
xii Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

List of Tables
Table 5-2 Access permission bits .. 5-13
Table 5-3 TEX field, and C and B bit encodings used in page table formats 5-16
Table 5-4 Cache policy bits ... 5-17
Table 5-5 Inner and Outer cache policy implementation options .. 5-18
Table 5-6 New V6 TEX, CB encodings ... 5-19
Table 5-7 Page attributes and memory types ... 5-19
Table 5-8 Memory attributes ... 5-21
Table 5-9 Memory ordering restrictions ... 5-27
Table 5-10 Memory region backwards compatibility ... 5-30
Table 5-11 Fault Status Register encoding ... 5-38
Table 5-12 Summary of aborts .. 5-39
Table 5-13 Access types from first-level descriptor bit values ... 5-50
Table 5-14 Access types from second-level descriptor bit values ... 5-53
Table 5-15 CP15 register functions ... 5-59
Table 8-1 AXI master interface attributes .. 8-2
Table 8-2 Core mode and APROT values ... 8-4
Table 8-3 AWUSER pins and meanings ... 8-6
Table 9-1 MPCore private memory region .. 9-2
Table 9-2 SCU register definition .. 9-3
Table 9-3 SCU Control Register bit assignments .. 9-5
Table 9-4 SCU Configuration Register bit assignments .. 9-6
Table 9-5 SCU CPU Status Register bit assignments .. 9-8
Table 9-6 SCU Invalidate All Register bit assignment ... 9-9
Table 9-7 MP11 CPUs and counters ... 9-10
Table 9-8 Performance Monitor Control Register bit assignments .. 9-11
Table 9-9 Event definitions .. 9-12
Table 9-10 Performance Monitor Event Register 0 bit assignments ... 9-13
Table 9-11 Performance Monitor Event Register 1 bit assignments ... 9-14
Table 9-12 Timer and watchdog registers ... 9-15
Table 9-13 Timer Control Register bit assignments .. 9-17
Table 9-14 Watchdog Control Register bit assignments ... 9-19
Table 10-1 Distributed Interrupt controller programmer’s model ... 10-10
Table 10-2 Interrupt Controller Type Register bit assignments ... 10-13
Table 10-3 Interrupt line encodings for bits 1 and 0 .. 10-17
Table 10-4 Software Interrupt Register bit assignments ... 10-19
Table 10-5 MP11 CPU Interrupt Interface Registers ... 10-20
Table 10-6 Priority Mask Register bit assignments ... 10-21
Table 10-7 Binary point bit values assignment .. 10-22
Table 10-8 Interrupt Acknowledge Register bit assignments .. 10-23
Table 11-1 Reset modes ... 11-4
Table 11-2 MP11 CPU power modes .. 11-7
Table 12-1 Terms used in register descriptions .. 12-6
Table 12-2 CP14 debug register map ... 12-7
Table 12-3 Debug ID Register bit functions .. 12-8
Table 12-4 Debug Status and Control Register bit functions .. 12-10
Table 12-5 Data Transfer Register bit functions .. 12-14
Table 12-6 Vector Catch Register bit functions ... 12-15
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. xiii
Unrestricted Access Non-Confidential

List of Tables
Table 12-7 MPCore breakpoint and watchpoint registers ... 12-16
Table 12-8 Breakpoint Value Registers bit functions .. 12-16
Table 12-9 Breakpoint Control Registers bit functions .. 12-17
Table 12-10 Meaning of BCR[21:20] bits .. 12-19
Table 12-11 Watchpoint Value Registers bit functions ... 12-21
Table 12-12 Watchpoint Control Registers bit functions ... 12-22
Table 12-13 CP14 debug instructions ... 12-26
Table 12-14 Debug instruction execution ... 12-28
Table 12-15 Behavior of the processor on debug events ... 12-31
Table 12-16 Setting of CP15 registers on debug events .. 12-32
Table 12-17 Values in the link register after exceptions ... 12-34
Table 12-18 Read PC value after debug state entry ... 12-37
Table 13-1 Supported public instructions .. 13-6
Table 13-2 Scan chain 7 register map .. 13-21
Table 14-1 Instruction interface signals .. 14-2
Table 14-2 ETMIACTL[17:0] ... 14-3
Table 14-3 Data address interface signals ... 14-4
Table 14-4 ETMDACTL[17:0] ... 14-5
Table 14-5 Data value interface signals .. 14-6
Table 14-6 ETMDRCTL[3:0] ... 14-6
Table 14-7 ETMPADV[2:0] ... 14-7
Table 14-8 Coprocessor interface signals .. 14-8
Table 14-9 Other connections ... 14-9
Table 15-1 Definition of cycle timing terms ... 15-4
Table 15-2 Pipeline stages ... 15-5
Table 15-3 Register interlock examples .. 15-8
Table 15-4 Data Processing instruction cycle timing behavior if destination is not PC 15-9
Table 15-5 Data processing instruction cycle timing behavior if destination is the PC 15-10
Table 15-6 QADD, QDADD, QSUB, and QDSUB instruction cycle timing behavior 15-12
Table 15-7 ARMv6 media data processing instructions cycle timing behavior 15-13
Table 15-8 ARMv6 sum of absolute differences instruction timing behavior 15-15
Table 15-9 Example interlocks .. 15-15
Table 15-10 Example multiply instruction cycle timing behavior ... 15-16
Table 15-11 Branch instruction cycle timing behavior .. 15-18
Table 15-12 Processor state updating instructions cycle timing behavior 15-19
Table 15-13 Cycle timing behavior for stores and loads, other than loads to the PC 15-21
Table 15-14 Cycle timing behavior for loads to the PC ... 15-21
Table 15-15 <addr_md_1cycle> and <addr_md_2cycle> LDR example instruction 15-22
Table 15-16 Load and store double instructions cycle timing behavior 15-23
Table 15-17 <addr_md_1cycle> and <addr_md_2cycle> LDRD example instruction 15-24
Table 15-18 Load and store multiples, other than load multiples including the PC 15-25
Table 15-19 Cycle timing behavior of load multiples, where the PC is in the register list 15-27
Table 15-20 RFE and SRS instructions cycle timing behavior ... 15-28
Table 15-21 Synchronization instructions cycle timing behavior .. 15-29
Table 15-22 Coprocessor instructions cycle timing behavior .. 15-30
Table 15-23 SWI, BKPT, Undefined, Prefetch Aborted instructions cycle timing behavior 15-31
Table 17-1 VFP11 MCR instructions .. 17-6
xiv Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

List of Tables
Table 17-2 VFP11 MRC instructions ... 17-6
Table 17-3 VFP11 MCRR instructions .. 17-7
Table 17-4 VFP11 MRRC instructions .. 17-7
Table 17-5 Single-precision data memory images and byte addresses 17-9
Table 17-6 Double-precision data memory images and byte addresses 17-10
Table 17-7 Single-precision three-operand register usage ... 17-14
Table 17-8 Single-precision two-operand register usage .. 17-15
Table 17-9 Double-precision three-operand register usage .. 17-15
Table 17-10 Double-precision two-operand register usage .. 17-16
Table 18-1 Default NaN values ... 18-5
Table 18-2 QNaN and SNaN handling .. 18-6
Table 18-3 VFP11 system registers .. 18-16
Table 18-4 Accessing VFP11 system registers ... 18-17
Table 18-5 FPSID bit fields ... 18-18
Table 18-6 Encoding of the Floating-Point Status and Control Register 18-20
Table 18-7 Vector length and stride combinations .. 18-22
Table 18-8 Encoding of the Floating-Point Exception Register ... 18-24
Table 18-9 Media and VFP Feature Register 0 bit functions .. 18-26
Table 18-10 Media and VFP Feature Register 1 bit functions .. 18-27
Table 19-1 Single-precision source register locking .. 19-9
Table 19-2 Single-precision source register clearing .. 19-10
Table 19-3 Double-precision source register locking .. 19-11
Table 19-4 Double-precision source register clearing for one-cycle instructions 19-12
Table 19-5 Double-precision source register clearing for two-cycle instructions 19-13
Table 19-6 FCMPS-FMSTAT RAW hazard ... 19-15
Table 19-7 FLDM-FADDS RAW hazard .. 19-16
Table 19-8 FLDM-short vector FADDS RAW hazard .. 19-16
Table 19-9 FMULS-FADDS RAW hazard ... 19-17
Table 19-10 Short vector FMULS-FLDMS WAR hazard ... 19-18
Table 19-11 Short vector FMULS-FLDMS WAR hazard in RunFast mode 19-19
Table 19-12 FLDM-FLDS-FADDS resource hazard .. 19-21
Table 19-13 FLDM-short vector FMULS resource hazard .. 19-21
Table 19-14 Short vector FDIVS-FADDS resource hazard ... 19-22
Table 19-15 Parallel execution in all three pipelines ... 19-24
Table 19-16 Throughput and latency cycle counts for VFP11 instructions 19-25
Table 20-1 Exceptional short vector FMULD followed by load/store instructions 20-10
Table 20-2 Exceptional short vector FADDS with a FADDS in the pretrigger slot 20-11
Table 20-3 Exceptional short vector FADDD with an FMACS trigger instruction 20-12
Table 20-4 Possible Invalid Operation exceptions .. 20-15
Table 20-5 Default results for invalid conversion inputs .. 20-17
Table 20-6 Rounding mode overflow results ... 20-19
Table 20-7 LSA and USA determination ... 20-26
Table 20-8 FADD family bounce thresholds .. 20-27
Table 20-9 FMUL family bounce thresholds .. 20-28
Table 20-10 FDIV bounce thresholds .. 20-30
Table 20-11 FCVTSD bounce thresholds ... 20-31
Table 20-12 Single-precision float-to-integer bounce thresholds and stored results 20-33
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. xv
Unrestricted Access Non-Confidential

List of Tables
Table 20-13 Double-precision float-to-integer bounce thresholds and stored results 20-34
Table A-1 Master port 0 read address channel ... A-2
Table A-2 Master port 0 read channel ... A-3
Table A-3 Master port 0 write address channel ... A-3
Table A-4 Master port 0 write channel .. A-4
Table A-5 Master port 0 write response channel ... A-4
Table A-6 Master port 1 read address channel ... A-5
Table A-7 Master port 1 read channel ... A-6
Table A-8 Master port 1 write address channel ... A-6
Table A-9 Master port 1 write channel .. A-7
Table A-10 Master port 1 write response channel ... A-7
Table A-11 Interrupt line signals .. A-8
Table A-12 Debug interface signals .. A-9
Table A-13 MBIST interface signals .. A-10
Table A-14 Power control interface signals ... A-11
Table A-15 Miscellaneous signals ... A-13
Table A-16 Scan test signals ... A-15
Table A-17 ETM interface signals ... A-16
Table A-18 Parity signals .. A-18
Table C-1 MBIST tester and MBIST controller signals .. C-7
Table C-2 MBISTRESULT signal descriptions .. C-8
Table C-3 MBISTTX bus bit assignments ... C-8
Table C-4 MBISTR[5:0] ... C-9
Table C-5 MBIST dispatch unit signals ... C-10
Table C-6 CPU mappings to MBISTOUT bits ... C-10
Table C-7 MBISTCE encodings .. C-11
Table C-8 MBIST Instruction Register bit assignments ... C-12
Table C-9 MBIST Dispatch Unit bit assignments .. C-12
Table C-10 Data log bit assignments .. C-14
Table C-11 RTL options .. C-15
Table C-12 RAM accesses using MBISTCE ... C-15
Table C-13 MBIST signals and ways .. C-17
Table C-14 Data cache size and Dside data RAM arrays ... C-17
Table C-15 MBIST signals and ways for Dside tag RAM .. C-18
Table C-16 Data cache size and tag RAM arrays ... C-18
Table C-17 MBIST enable signals and Iside data RAM bocks .. C-19
Table C-18 Iside cache size and data RAM arrays ... C-20
Table C-19 MBIST signals and ways for Iside tag RAM .. C-20
Table C-20 Cache sizes and iside tag RAM arrays ... C-21
Table C-21 Cache sizes and Data dirty RAMs arrays ... C-21
Table C-22 TLB RAMs and MBIST signals ... C-22
Table C-23 Enabling SCU RAM arrays ... C-24
Table C-24 SCU RAM arrays and data cache sizes ... C-24
Table C-25 Instruction Register values and MBIST test patterns .. C-26
Table D-1 RVI ordering, MP11 CPUID, and physical JTAG positions D-2
Table D-2 One additional item in the scan chain ... D-2
Table D-3 Two additional items in the scan chain ... D-2
xvi Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

List of Tables
Table F-1 Differences between issue E and issue F ... F-1
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. xvii
Unrestricted Access Non-Confidential

List of Tables
xviii Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

List of Figures
ARM11 MPCore Processor Technical Reference
Manual

Key to timing diagram conventions ... xxx
Figure 1-1 ARM11 MPCore processor block diagram .. 1-3
Figure 1-2 MP11 CPU pipeline stages ... 1-22
Figure 1-3 Typical operations in pipeline stages .. 1-24
Figure 1-4 Typical ALU operation ... 1-25
Figure 1-5 Typical multiply operation .. 1-26
Figure 1-6 Progression of an LDR/STR operation .. 1-27
Figure 1-7 Progression of an LDM/STM operation ... 1-28
Figure 1-8 Progression of an LDR that misses ... 1-29
Figure 2-1 Big-endian addresses of bytes within words ... 2-6
Figure 2-2 Little-endian addresses of bytes within words ... 2-7
Figure 2-3 Register organization in ARM state ... 2-13
Figure 2-4 MPCore register set showing banked registers .. 2-14
Figure 2-5 Register organization in Thumb state ... 2-15
Figure 2-6 ARM state and Thumb state registers relationship ... 2-16
Figure 2-7 Program status register ... 2-17
Figure 3-1 CP15 MRC and MCR bit pattern ... 3-2
Figure 3-2 Main ID Register format .. 3-11
Figure 3-3 Cache Type Register format ... 3-12
Figure 3-4 TLB Type Register format ... 3-14
Figure 3-5 CPU ID Register format .. 3-15
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. xix
Unrestricted Access Non-Confidential

List of Figures
Figure 3-6 ID_PFR0 format .. 3-16
Figure 3-7 ID_PFR1 format .. 3-17
Figure 3-8 ID_DFR0 format .. 3-17
Figure 3-9 Memory Model Feature Register 0 format .. 3-18
Figure 3-10 Memory Model Feature Register 1 format .. 3-19
Figure 3-11 Memory Model Feature Register 2 format .. 3-21
Figure 3-12 Memory Model Feature Register 3 format .. 3-22
Figure 3-13 Instruction Set Attributes Register 0 format .. 3-24
Figure 3-14 Instruction Set Attributes Register 1 format .. 3-25
Figure 3-15 Instruction Set Attributes Register 2 format .. 3-26
Figure 3-16 Instruction Set Attributes Register 3 format .. 3-27
Figure 3-17 Instruction Set Attributes Register 4 format .. 3-28
Figure 3-18 Control Register format ... 3-30
Figure 3-19 Auxiliary Control Register format .. 3-33
Figure 3-20 Coprocessor Access Control Register format ... 3-36
Figure 3-21 Translation Table Base Register 0 format .. 3-37
Figure 3-22 Translation Table Base Register 1 format .. 3-38
Figure 3-23 Translation Table Base Control Register format ... 3-39
Figure 3-24 Domain Access Control Register format ... 3-41
Figure 3-25 Data Fault Status Register format .. 3-42
Figure 3-26 Instruction Fault Status Register format ... 3-43
Figure 3-27 Register 7 Set/Way format .. 3-49
Figure 3-28 CP15 Register c7 MVA format .. 3-50
Figure 3-29 CP15 c7 MVA format for Flush Branch Target Cache Entry operation 3-50
Figure 3-30 VA to PA register format ... 3-51
Figure 3-31 PA Register aborted translation .. 3-52
Figure 3-32 PA Register successful translation ... 3-53
Figure 3-33 TLB Operations Register Virtual Address format .. 3-55
Figure 3-34 TLB Operations Register ASID format .. 3-55
Figure 3-35 Data Cache Lockdown Register format .. 3-57
Figure 3-36 TLB Lockdown Register format .. 3-58
Figure 3-37 FCSE PID Register format .. 3-62
Figure 3-38 Address mapping using CP15 c13 ... 3-63
Figure 3-39 Context ID Register format ... 3-64
Figure 3-40 Thread ID Registers format .. 3-65
Figure 3-41 Performance Monitor Control Register format .. 3-66
Figure 3-42 TLB Debug Control Register format ... 3-71
Figure 3-43 Lockdown TLB index format ... 3-72
Figure 3-44 TLB VA Register format .. 3-72
Figure 3-45 Memory space identifier format .. 3-73
Figure 3-46 TLB PA Register format .. 3-73
Figure 3-47 TLB Attributes Register format ... 3-74
Figure 4-1 Load unsigned byte .. 4-7
Figure 4-2 Load signed byte .. 4-8
Figure 4-3 Store byte ... 4-8
Figure 4-4 Load unsigned halfword, little-endian ... 4-9
Figure 4-5 Load unsigned halfword, big-endian ... 4-9
xx Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

List of Figures
Figure 4-6 Load signed halfword, little-endian .. 4-10
Figure 4-7 Load signed halfword, big-endian ... 4-11
Figure 4-8 Store halfword, little-endian ... 4-11
Figure 4-9 Store halfword, big-endian .. 4-12
Figure 4-10 Load word, little-endian ... 4-13
Figure 4-11 Load word, big-endian ... 4-14
Figure 4-12 Store word, little-endian .. 4-15
Figure 4-13 Store word, big-endian .. 4-16
Figure 5-1 Translation table managed TLB fault checking sequence 1 5-34
Figure 5-2 Translation table managed TLB fault checking sequence 2 5-35
Figure 5-3 Backwards-compatible first-level descriptor format ... 5-41
Figure 5-4 Backwards-compatible second-level descriptor format ... 5-42
Figure 5-5 Backwards-compatible section, supersection, and page translation 5-43
Figure 5-6 ARMv6 first-level descriptor formats with subpages enabled 5-44
Figure 5-7 ARMv6 first-level descriptor formats with subpages disabled 5-45
Figure 5-8 ARMv6 second-level descriptor format ... 5-45
Figure 5-9 ARMv6 section, supersection, and page translation ... 5-46
Figure 5-10 Creating a first-level descriptor address .. 5-49
Figure 5-11 Translation for a 1MB section, ARMv6 format .. 5-51
Figure 5-12 Translation for a 1MB section, backwards-compatible format 5-52
Figure 5-13 Generating a second-level page table address ... 5-53
Figure 5-14 Large page table walk, ARMv6 format .. 5-54
Figure 5-15 Large page table walk, backwards-compatible format .. 5-55
Figure 5-16 4KB small page or 1KB small subpage translations, backwards-compatible 5-56
Figure 5-17 4KB extended small page translations, ARMv6 format ... 5-57
Figure 5-18 4KB extended small page or 1KB extended small

subpage translations, backwards-compatible ... 5-58
Figure 7-1 Level 1 data side memory system block diagram ... 7-3
Figure 7-2 Dynamic branch prediction and instruction cache lookup blocks 7-10
Figure 8-1 Exclusive monitor state machine ... 8-8
Figure 8-2 ACLKEN signal timing ... 8-9
Figure 9-1 SCU Control Register format .. 9-4
Figure 9-2 SCU Configuration Register format ... 9-6
Figure 9-3 SCU MP11 CPU Status Register .. 9-7
Figure 9-4 SCU Invalidate All Register format .. 9-9
Figure 9-5 SCU Performance Monitor Control Register format .. 9-10
Figure 9-6 Performance Monitor Event Register 0 bit format ... 9-13
Figure 9-7 Performance Monitor Event Register 1 bit format ... 9-14
Figure 9-8 Timer Control Register format ... 9-17
Figure 9-9 Timer Interrupt Status Register format .. 9-18
Figure 9-10 Watchdog Control Register format .. 9-19
Figure 9-11 Watchdog Interrupt Status Register format ... 9-20
Figure 9-12 Watchdog Reset Status Register format ... 9-21
Figure 10-1 Interrupt Distributor block diagram .. 10-7
Figure 10-2 Interrupt Distributor Control Register format ... 10-12
Figure 10-3 Interrupt Controller Type Register format .. 10-13
Figure 10-4 Interrupt Priority Registers format ... 10-15
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. xxi
Unrestricted Access Non-Confidential

List of Figures
Figure 10-5 Interrupt CPU Targets Registers format ... 10-16
Figure 10-6 Interrupt Configuration Registers format ... 10-17
Figure 10-7 Software Interrupt Register format .. 10-18
Figure 10-8 CPU Interface Control Register format ... 10-21
Figure 10-9 Priority Mask Register format ... 10-21
Figure 10-10 Binary Point Register format ... 10-22
Figure 10-11 Interrupt Acknowledge Register format .. 10-23
Figure 10-12 Running Priority Register format ... 10-23
Figure 11-1 ARM11 MPCore processor power management .. 11-12
Figure 12-1 Typical debug system ... 12-2
Figure 12-2 Debug ID Register format ... 12-8
Figure 12-3 Debug Status and Control Register format ... 12-9
Figure 12-4 Core restarted bit and core halted bit ... 12-10
Figure 12-5 DTR format ... 12-14
Figure 12-6 Vector Catch Register format ... 12-14
Figure 12-7 Breakpoint Control Registers format ... 12-17
Figure 12-8 Watchpoint Control Registers format .. 12-21
Figure 13-1 JTAG DBGTAP state machine diagram ... 13-2
Figure 13-2 Bypass register bit order ... 13-8
Figure 13-3 Device ID code register bit order .. 13-9
Figure 13-4 Instruction Register bit order ... 13-10
Figure 13-5 Scan Chain Select Register bit order .. 13-11
Figure 13-6 Scan chain 0 bit order ... 13-12
Figure 13-7 Scan chain 1 bit order ... 13-13
Figure 13-8 Scan chain 4 bit order ... 13-15
Figure 13-9 Scan chain 5 bit order, EXTEST selected .. 13-16
Figure 13-10 Scan chain 5 bit order, INTEST selected .. 13-16
Figure 13-11 Scan chain 7 bit order ... 13-20
Figure 13-12 Behavior of the ITRsel IR instruction .. 13-25
Figure 14-1 ETMCPADDRESS encoding .. 14-8
Figure 16-1 FMAC pipeline .. 16-6
Figure 16-2 DS pipeline ... 16-8
Figure 16-3 LS pipeline .. 16-10
Figure 17-1 Single-precision data format ... 17-3
Figure 17-2 Double-precision data format .. 17-4
Figure 17-3 Register file access ... 17-5
Figure 17-4 Register banks .. 17-11
Figure 18-1 FMDRR instruction format .. 18-10
Figure 18-2 FMRRD instruction format .. 18-11
Figure 18-3 FMSRR instruction format .. 18-12
Figure 18-4 FMRRS instruction format .. 18-14
Figure 18-5 Floating-Point System ID Register .. 18-18
Figure 18-6 Floating-Point Status and Control Register .. 18-19
Figure 18-7 Floating-Point Exception Register .. 18-23
Figure 18-8 Media and VFP Feature Register 0 format ... 18-26
Figure 18-9 Media and VFP Feature Register 1 format ... 18-27
Figure B-1 Target timing parameters for unregistered signals ... B-4
xxii Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

List of Figures
Figure C-1 MBIST block diagram ... C-3
Figure C-2 Data mapping for MBIST .. C-18
Figure C-3 Dside tag RAM mapping .. C-19
Figure C-4 Iside data array mapping .. C-20
Figure C-5 Iside tag RAM MBISTDOUT mapping .. C-21
Figure C-6 Data dirty RAM mapping .. C-22
Figure C-7 TLB RAM organization with four MP11 CPUs .. C-22
Figure C-8 TLB mapping .. C-23
Figure C-9 BTAC mapping ... C-23
Figure C-10 SCU RAM array organization ... C-24
Figure C-11 SCU tag RAM mapping .. C-25
Figure E-1 IEM structure ... E-3
Figure E-2 AXI register slices and level shifters ... E-4
Figure E-3 IEC request/acknowledge interface .. E-5
Figure E-4 AXI write channel .. E-5
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. xxiii
Unrestricted Access Non-Confidential

List of Figures
xxiv Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Preface

This preface introduces the ARM11 MPCore Processor Technical Reference Manual. It
contains the following sections:

• About this book on page xxvi

• Feedback on page xxxii.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. xxv
Unrestricted Access Non-Confidential

Preface
About this book

This book is for the ARM11 MPCore Processor.

Product revision status

The rnpn identifier indicates the revision status of the product described in this book,
where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This book is written for hardware and software engineers implementing ARM11
MPCore processor system designs. It provides information that enable designers to
integrate the processor into a target system.

Note
 The ARM11 MPCore Processor is a single IP core. It consists of between one and four
Central Processing Units (CPUs). Individual CPUs are referred to as MP11 CPUs.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this chapter for an introduction to the ARM11 MPCore processor
and descriptions of the major functional blocks.

Chapter 2 Programmers Model
Read this chapter for a description of the MPCore registers and
programming details.

Chapter 3 Control Coprocessor CP15
Read this chapter for a description of the MPCore control coprocessor
CP15 registers and programming details.

Chapter 4 Unaligned and Mixed-Endian Data Access Support
Read this chapter for a description of the unaligned and mixed-endian
data access support.

Chapter 5 Memory Management Unit
Read this chapter for a description of the MPCore Memory Management
Unit (MMU) and the address translation process.
xxvi Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Preface
Chapter 6 Program Flow Prediction
Read this chapter for a description of the functions of the MPCore
Prefetch Unit, including static and dynamic branch prediction and the
return stack.

Chapter 7 Level 1 Memory System
Read this chapter for a description of the MPCore level one memory
system, including caches, Translation Lookaside Buffers (TLBs), and
Write Buffer.

Chapter 8 Level 2 Memory System
Read this chapter for a description of the MPCore level two memory
system, including supported AXI transfers, CPU synchronization, and
synchronization operations.

Chapter 9 MPCore Private Memory Region
Read this chapter for a description of the Coherency Protocol and the
programmable registers of the Snoop Control Unit (SCU).

Chapter 10 MPCore Distributed Interrupt Controller
Read this chapter for a description of the Distributed Interrupt Controller.

Chapter 11 Clocking, Resets, and Power Management
Read this chapter for a description of the MPCore clocking modes and the
reset signals.

Chapter 12 Debug
Read this chapter for a description of the MPCore debug support.

Chapter 13 Debug Test Access Port
Read this chapter for a description of the JTAG-based MPCore Debug
Test Access Port.

Chapter 14 Trace Interface Port
Read this chapter for a description of the Embedded Trace Macrocell
(ETM).

Chapter 15 Cycle Timings and Interlock Behavior
Read this chapter for a description of the MPCore instruction cycle
timing and for details of the interlocks.

Chapter 16 Introduction to VFP
Read this chapter for an introduction to the Vector Floating-Point (VFP).

Chapter 17 VFP Register File
Read this chapter for a description of the VFP register file.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. xxvii
Unrestricted Access Non-Confidential

Preface
Chapter 18 VFP Programmers Model
Read this chapter for a description of the VFP programmers model.

Chapter 19 VFP Instruction Execution
Read this chapter for a description of forwarding, hazards, and parallel
execution in the VFP instruction pipelines.

Chapter 20 VFP Exception Handling
Read this chapter for a description of VFP exception handling.

Appendix A Signal Descriptions
Read this appendix for a description of the MPCore signals.

Appendix B AC Characteristics
Read this appendix for a description of the MPCore AC characteristics.

Appendix C MBIST Controller and Dispatch Unit
Read this appendix for a description of the Memory Built-in Self Test
(MBIST) Controller and Dispatch Unit.

Appendix D Scan chain ordering with RVI

Read this appendix for a description of the scan chain ordering with
RealView ICE (RVI).

Appendix E IEM
Read this appendix for a description of the Intelligent Energy Manager
(IEM) wrappers.

Appendix F Revisions

Read this appendix for a description of the technical changes between
released issues of this book.

 Glossary Read the Glossary for definitions of terms used in this book.

Conventions

Conventions that this book can use are described in:

• Typographical on page xxix

• Timing diagrams on page xxix

• Signals on page xxx.
xxviii Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Preface
Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

monospace Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Angle brackets enclose replaceable terms for assembler syntax
where they appear in code or code fragments. They appear in
normal font in running text. For example:

• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects which register is accessed.

Timing diagrams

The figure named Key to timing diagram conventions on page xxx explains the
components used in these diagrams. When variations occur they have clear labels. You
must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. xxix
Unrestricted Access Non-Confidential

Preface
Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same
time and they look similar to the bus change shown in Key to timing diagram
conventions. If a timing diagram shows a single-bit signal in this way then its value does
not affect the accompanying description.

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means:

• HIGH for active-HIGH signals

• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Prefix A Denotes global Advanced eXtensible Interface (AXI) signals.

Prefix AR Denotes AXI read address channel signals.

Prefix AW Denotes AXI write address channel signals.

Prefix B Denotes AXI write response channel signals.

Prefix C Denotes AXI low-power interface signals.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

Prefix P Denotes Advanced Peripheral Bus (APB) signals.

Prefix R Denotes AXI read data channel signals.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xxx Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Preface
Prefix W Denotes AXI write data channel signals.

Further reading

This section lists publications by ARM, and by third parties.

See http://infocenter.arm.com for access to ARM documentation.

ARM publications

This book contains information that is specific to the ARM11 MPCore processor. See
the following documents for other relevant information:

• ARM11 MPCore Processor Configuration and Sign-off Guide (ARM DII 0203)

• L220 Cache Controller Technical Reference Manual (ARM DDI 0329)

• AMBA® AXI Protocol Specification (ARM IHI 0022)

• ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition
(ARM DDI 0406)

• RealView™ Compilation Tools Developer Guide (ARM DUI 0203)

• RealView ICE User Guide (ARM DUI 0155)

• Intelligent Energy Controller Technical Overview (ARM DTO 0005).

Other publications

This section lists relevant documents published by third parties:

• IEEE Std. 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan
Architecture (JTAG)

• ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. xxxi
Unrestricted Access Non-Confidential

Preface
Feedback

ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and
give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms
if appropriate.

Feedback on this book

If you have any comments on this book, send email to errata@arm.com. Give:

• the title

• the number

• the relevant page number(s) to which your comments apply

• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
xxxii Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 1
Introduction

This chapter introduces the ARM11 MPCore processor and its features. It contains the
following sections:

• About the processor on page 1-2

• Extensions to ARMv6 on page 1-4

• MP11 CPU overview on page 1-5

• Debug and programming support on page 1-13

• Power management on page 1-18

• Configurable options on page 1-20

• Pipeline stages on page 1-22

• Typical pipeline operations on page 1-24

• MPCore architecture with Jazelle technology on page 1-30

• Parity checking support on page 1-32

• Product revisions on page 1-33.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-1
Unrestricted Access Non-Confidential

Introduction
1.1 About the processor

The processor incorporates up to four MP11 CPUs that implement the ARM
architecture v6K. It supports the ARM and Thumb instruction sets, Jazelle technology
to enable direct execution of Java bytecodes, and a range of SIMD DSP instructions that
operate on 16-bit or 8-bit data values in 32-bit registers.

The processor is a high-performance, low-power, ARM cached multiprocessor
macrocell that provides full virtual memory capabilities.

The processor features:

• up to four MP11 CPUs

• a Snoop Control Unit (SCU) responsible for maintaining coherency among MP11
CPUs level 1 data caches

• a Distributed Interrupt Controller with support for legacy ARM interrupts

• a private timer and a private watchdog for each MP11 CPU

• parity checking for all RAM instances

• AXI high-speed Advanced Microprocessor Bus Architecture (AMBA) level two
interfaces.

Each MP11 CPU features:

• an integer unit with integral EmbeddedICE-RT logic

• an 8-stage pipeline

• branch prediction with return stack

• coprocessors 14 and 15

• Instruction and Data Memory Management Units (MMUs), managed using
MicroTLB structures backed by a unified main TLB

• Instruction and data caches, including a non-blocking data cache with
Hit-Under-Miss (HUM)

• a data cache that is physically indexed, physically tagged

• a data cache that is write back, write allocate only

• an instruction cache that is virtually indexed, physically tagged

• 32-bit interface to the instruction cache and 64-bit interface to the data cache

• hardware support for data cache coherency

• Vector Floating-Point (VFP) coprocessor support

• JTAG-based debug.

Figure 1-1 on page 1-3 shows the main blocks of the processor.
1-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
Figure 1-1 ARM11 MPCore processor block diagram

Interrupt
CPU 1

interface

Interrupt
CPU 2

interface

Interrupt
CPU 0

interface

Interrupt
CPU 3

interface

Distributed
Interrupt

Controller

Interrupt
lines

Instruction
and data

 64-bit bus

Instruction
and data

 64-bit bus

MP11
CPU 1

MP11
CPU 2

MP11
CPU 3

Snoop Control Unit (SCU)

MP11
CPU 0

Coherency
control bus

Coherency
control bus

Coherency
control bus

Timer and
watchdog

Timer and
watchdog

Timer and
watchdog

Timer and
watchdog

Private peripheral bus

Coherency
control bus

AXI Read/write
64-bit bus

AXI Read/write
64-bit bus

Private
FIQ
lines

ARM 11 MPCore Processor

Instruction
and data

 64-bit bus

Instruction
and data

 64-bit bus
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-3
Unrestricted Access Non-Confidential

Introduction
1.2 Extensions to ARMv6

The MPCore processor provides support for extensions to ARMv6 that include:

• Store and Load Exclusive instructions for bytes, halfwords and doublewords, and
a new Clear Exclusive instruction.

• A WaitForInterrupt instruction in the ARM and Thumb instruction set

• New WaitForEvent and SendEvent instructions.

• A true no-operation instruction and yield instruction.

• Architectural remap registers.

• Revised use of TEX remap bits. The ARMv6 MMU page table descriptors use a
large number of bits to describe all of the options for inner and outer cachability.
In reality, no application requires all of these options simultaneously. Therefore it
is possible to use the TEX remap mechanism to configure the MP11 CPUs to
support only a small number of options. This implies a level of indirection in the
page table mappings.

The TEX CB encoding table provides two OS managed page table bits. For binary
compatibility with existing ARMv6 ports of OSs, this gives a separate mode of
operation of the MMU. This is called the TEX Remap configuration and is
controlled by bit [28] TR in CP15 Register 1.

• Revised use of AP bits. In the MP11 CPUs the APX and AP[1:0] encoding b111
is Privileged or User mode read-only access. AP[0] indicates an abort type,
Access Bit fault, when CP15 c1[29] is 1.

For more information see the ARM Architecture Reference Manual.
1-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
1.3 MP11 CPU overview

The following sections describe the main blocks of each MP11 CPU:

• Integer core

• Load Store Unit (LSU) on page 1-9

• Prefetch unit on page 1-9

• Memory system on page 1-9.

1.3.1 Integer core

The MP11 CPUs are built around an ARM11 integer core in an ARMv6 implementation
that runs the 32-bit ARM, 16-bit Thumb, and 8-bit Jazelle instruction set. The integer
core contains EmbeddedICE-RT logic and a JTAG debug interface to enable hardware
debuggers to communicate with the processor. The following sections describe the
integer core:

• Instruction set categories

• Conditional execution on page 1-6

• Registers on page 1-6

• Modes and exceptions on page 1-6

• Thumb instruction set on page 1-6

• DSP instructions on page 1-6

• Media extensions on page 1-7

• Datapath on page 1-7

• Branch prediction on page 1-8

• Return stack on page 1-9.

Instruction set categories

The instruction sets are divided into four categories:

• data processing instructions

• load and store instructions

• branch instructions

• coprocessor instructions.

Note
 Only load, store, and swap instructions can access data from memory.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-5
Unrestricted Access Non-Confidential

Introduction
Conditional execution

The processor conditionally executes nearly all ARM instructions. You can decide if the
condition code flags, Negative, Zero, Carry, and Overflow, are updated according to
their result.

Registers

MP11 CPUs contain:

• 31 general-purpose 32-bit registers

• six dedicated 32-bit registers.

Note
 At any one time, 16 registers are visible. The remainder are banked registers used to
speed up exception processing.

Modes and exceptions

The core provides a set of operating and exception modes to support systems combining
complex operating systems, user applications, and real-time demands. There are seven
operating modes, five of which are exception processing modes:

• User mode is the usual ARM program execution state, and is used for executing
most application programs

• Fast interrupt (FIQ) mode is used for handling fast interrupts

• Interrupt (IRQ) mode is used for general-purpose interrupt handling

• Supervisor mode is a protected mode for the operating system

• Abort mode is entered after a data or instruction Prefetch Abort

• System mode is a privileged user mode for the operating system

• Undefined mode is entered when an Undefined instruction exception occurs.

Thumb instruction set

The Thumb instruction set contains a subset of the most commonly-used 32-bit ARM
instructions that has been encoded into 16-bit wide opcodes, to reduce memory
requirements.

DSP instructions

The ARM DSP instruction set extensions provide the following:

• 16-bit data operations

• saturating arithmetic
1-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
• MAC operations.

Multiply instructions are processed using a single-cycle 32x16 implementation. There
are 32x32, 32x16, and 16x16 multiply instructions (MAC).

Media extensions

The ARMv6 instruction set provides media instructions to complement the DSP
instructions. The media instructions are divided into the following main groups:

• Additional multiplication instructions for handling 16-bit and 32-bit data,
including dual-multiplication instructions that operate on both 16-bit halves of
their source registers.

This group includes an instruction that improves the performance and size of code
for multi-word unsigned multiplications.

• Instructions to perform Single Instruction Multiple Data (SIMD) operations on
pairs of 16-bit values held in a single register, or on quadruplets of 8-bit values
held in a single register. The main operations supplied are addition and
subtraction, selection, pack, and saturation.

• Instructions to extract bytes and halfwords from registers and zero-extend or
sign-extend them. These include a parallel extraction of two bytes followed by
extension of each byte to a halfword.

• Instructions to perform the unsigned Sum-of-Absolute-Differences (SAD)
operation. This is used in MPEG motion estimation.

Datapath

The datapath consists of three pipelines:

• ALU/shift pipe

• MAC pipe on page 1-8

• load-store pipe, see Load Store Unit (LSU) on page 1-9.

ALU/shift pipe

The ALU/shift pipeline executes most of the ALU operations, and includes a 32-bit
barrel shifter. It consists of three pipeline stages:

Shift The Shift stage contains the full barrel shifter. All shifts, including those
required by the LSU, are performed in this stage.

The saturating left shift, which doubles the value of an operand and
saturates it, is implemented in the Shift stage.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-7
Unrestricted Access Non-Confidential

Introduction
ALU The ALU stage performs all arithmetic and logic operations, and
generates the condition codes for instructions that set these operations.

The ALU stage consists of a logic unit, an arithmetic unit, and a flag
generator. Evaluation of the flags is performed in parallel with the main
adder in the ALU. The flag generator is enabled only on flag-setting
operations.

To support the DSP instructions, the carry chains of the main adder are
divided to enable 8 and 16-bit SIMD instructions.

Sat The Sat stage implements the saturation logic required by the various
classes of DSP instructions.

MAC pipe

The MAC pipeline executes all of the enhanced multiply, and multiply-accumulate
instructions.

The MAC unit consists of a 32x16 multiplier plus an accumulate unit, that is configured
to calculate the sum of two 16x16 multiplies. The accumulate unit has its own dedicated
single register read port for the accumulate operand.

To minimize power consumption, each of the MAC and ALU stages is only clocked
when required.

Branch prediction

The integer core uses both static and dynamic branch prediction. All branches are
predicted where the target address is an immediate address, or fixed-offset PC-relative
address.

The first level of branch prediction is dynamic, through a 128-entry Branch Target
Address Cache (BTAC). If the PC of a branch matches an entry in the BTAC, the branch
history and the target address are used to fetch the new instruction stream.

Dynamically predicted branches might be removed from the instruction stream, and
therefore execute in zero cycles.

If the address mappings are changed, the BTAC must be flushed. Address mapping
changes are the result of page table mapping changes, FCSE PID Register changes, or
Context ID Register changes. A BTAC flush instruction is provided in the CP15
coprocessor.

Static branch prediction is used to handle branches not matched in the BTAC. The static
predictor makes a prediction based on the direction of the branches.
1-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
Return stack

A 3-entry return stack is included to accelerate returns from procedure calls. For each
procedure call, the return address is pushed onto a hardware stack. When a procedure
return is recognized, the address held in the return stack is popped, and is used by the
prefetch unit as the predicted return address.

Note
 See Pipeline stages on page 1-22 for details of the pipeline stages and instruction
progression.

See Chapter 3 Control Coprocessor CP15 for system coprocessor programming
information.

1.3.2 Load Store Unit (LSU)

The Load Store Unit (LSU) manages all load and store operations. The load-store
pipeline decouples loads and stores from the MAC and ALU pipelines.

When LDM and STM instructions are issued to the LSU pipeline, other instructions run
concurrently, subject to the requirements of supporting precise exceptions.

1.3.3 Prefetch unit

The prefetch unit fetches instructions from the instruction cache, or from external
memory and predicts the outcome of branches in the instruction stream. See Chapter 6
Program Flow Prediction for more details.

1.3.4 Memory system

MP11 CPU has a level one memory system with the following features:

• separate instruction and data caches

• 64-bit datapaths throughout the memory system

• physically indexed, physically tagged data cache

• virtually indexed, physically tagged instruction cache

• complete memory management

• support for four sizes of memory page

• export of memory attributes for second-level memory system.

The following sections describe the memory system:

• Instruction and data caches on page 1-10

• Cache power consumption reduction on page 1-10
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-9
Unrestricted Access Non-Confidential

Introduction
• Memory Management Unit on page 1-11.

Instruction and data caches

The MP11 CPU provides separate instruction and data caches. The caches have the
following features:

• The instruction and data cache can be independently configured during synthesis
to sizes between 16KB and 64KB.

• Both caches are 4-way set-associative.

• Cache replacement policy is round-robin.

• The cache line length is eight words.

• Cache lines are write-back. The data cache is write-back write allocate.

• Each cache can be disabled independently, using the system control coprocessor.

• Both data cache read misses and write misses are non-blocking. Up to three
outstanding data cache read misses and up to four outstanding data cache write
misses are supported.

• Support is provided for streaming of sequential data from LDM and LDRD
operations, and for sequential instruction fetches.

• On a cache-miss, critical word first filling of the cache is performed.

• For optimum area and performance, all of the cache RAMs, and the associated tag
RAMs, can be implemented using standard ASIC RAM compilers.

Cache power consumption reduction

To reduce power consumption, the number of full cache reads is reduced by taking
advantage of the sequential nature of many cache operations. If a cache read is
sequential to the previous cache read, and the read is within the same cache line, only
the data RAM set that was previously read is accessed.

Store buffer

The MP11 CPU has a store buffer with four 64-bit slots. The store buffer handles all
write transfers coming from the integer core. The store buffer can merge write accesses
to the same 64-bit slot. If writes are performed to a cacheable region the store buffer,
when draining, performs a data cache lookup. The store buffer then writes data into the
cache in the case of hits, and requests missing data in the case of misses.
1-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
Because cache lookups are only performed for writes to cacheable regions and full line
allocations from the store buffer to the cache are possible, the overall L1 and L2 write
traffic is reduced.

Memory Management Unit

The Memory Management Unit (MMU) has a single Translation Lookaside Buffer
(TLB) for both instructions and data. The MMU includes a 4KB page mapping size to
enable a smaller RAM and ROM footprint for embedded systems and operating systems
that have many small mapped objects.

The MMU is responsible for protection checking, address translation, and memory
attributes, some of which can be passed to an external level two memory system. The
memory translations are cached in MicroTLBs for each of the instruction and data
caches, with a single main TLB backing the MicroTLBs.

The MMU has the following features:

• matching of Virtual Address and Address Space IDentifier (ASID)

• checking of domain access permissions

• checking of memory attributes

• virtual-to-physical address translation

• support for four page (region) sizes

• mapping of accesses to cache, or external memory

• TLB loading for hardware and software.

Paging

Four page sizes are supported:

• 16MB super sections

• 1MB sections

• 64KB large pages

• 4KB small pages.

Domains

Sixteen access domains are supported.

TLB

A 2-level TLB structure is implemented. Eight entries in the main TLB are lockable.
Hardware TLB loading is supported, and is backwards compatible with previous
versions of the ARM architecture.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-11
Unrestricted Access Non-Confidential

Introduction
ASIDs

TLB entries can be global, or can be associated with particular processes or applications
using Application Space IDentifiers (ASIDs). ASIDs enable TLB entries to remain
resident during context switches, avoiding the requirement of reloading them
subsequently, and also enable task-aware debugging.

System control coprocessor

Cache operations are controlled through a dedicated coprocessor, CP15, integrated
within the core. This coprocessor provides a standard mechanism for configuring the
level one memory system, and also provides functions such as memory barrier
instructions. See System control on page 1-16 and Chapter 7 Level 1 Memory System for
more details.
1-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
1.4 Debug and programming support

The following sections describe MP11 CPU debug and programming support features:

• Debug

• Vector Floating-Point (VFP) on page 1-14

• System control on page 1-16

• Interrupt handling on page 1-16.

1.4.1 Debug

The debug coprocessor, CP14, implements a full range of debug features described in
Chapter 12 Debug and Chapter 13 Debug Test Access Port.

The processor provides extensive support for real-time debug and performance
profiling.

The following sections describe debug in more detail:

• System performance monitoring

• Real-time debug facilities

• Debug environment on page 1-14.

System performance monitoring

The processor contains a group of counters that can be configured to gather statistics on
the operation of the processor and memory system. See c15, Performance Monitor
Control Register (PMNC) on page 3-66 for more details.

Real-time debug facilities

The processor contains an EmbeddedICE-RT logic unit to provide real-time debug
facilities. It has the following capabilities:

• up to six breakpoints

• thread-aware breakpoints

• up to two watchpoints

• Debug Communications Channel (DCC).

The EmbeddedICE-RT logic is connected directly to the processor and monitors the
internal address and data buses. You can access the EmbeddedICE-RT logic in one of
two ways:

• executing CP14 instructions

• through a JTAG-style interface and associated TAP controller.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-13
Unrestricted Access Non-Confidential

Introduction
The EmbeddedICE-RT logic supports two modes of debug operation:

Halting debug-mode

On a debug event, such as a breakpoint or watchpoint, the processor is
stopped and forced into debug state. This enables the internal state of the
processor, and the external state of the system, to be examined
independently from other system activity. When the debugging process
has been completed, the processor and system state is restored, and
normal program execution resumed.

Monitor debug-mode

On a debug event, a debug exception is generated instead of entering
debug state, as in halting debug-mode. A debug monitor program is
activated by the exception entry and it is then possible to debug the
processor while enabling the execution of critical interrupt service
routines. The debug monitor program communicates with the debug host
over the DCC.

Debug environment

Several external hardware and software tools are available to enable real-time
debugging using the EmbeddedICE-RT logic.

1.4.2 Vector Floating-Point (VFP)

The optional VFP coprocessor within each MP11 CPU supports floating-point
arithmetic. The VFP is implemented as a dedicated functional block, and is mapped as
coprocessor numbers 10 and 11. Using the coprocessor access register, software can
determine whether the VFP is present (see c1, Coprocessor Access Control Register on
page 3-35 for more details).

The VFP implements the ARM VFPv2 floating-point coprocessor instruction set. It
supports single-precision and double-precision arithmetic on vector-vector,
vector-scalar, and scalar-scalar data sets. Vectors can consist of up to eight
single-precision, or four double-precision elements.

The VFP has its own bank of 32 registers for single-precision operands that can be used
in pairs for double-precision operands. Loads and stores of VFP registers can operate in
parallel with arithmetic operations.
1-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
The VFP supports a wide range of single and double precision operations, including
ABS, NEG, COPY, MUL, MAC, DIV, and SQRT. Most of these are effectively executed in a single
cycle. Table 1-1 shows the exceptions. These issue latencies also apply to individual
elements in a vector operation.

See VFP11 Vector Floating-point Coprocessor Technical Reference Manual for more
details.

IEEE754 compliance

The VFP supports all five floating-point exceptions defined by IEEE754:

• invalid operation

• divide by zero

• overflow

• underflow

• inexact.

Trapping of these exceptions can be individually enabled or disabled. If disabled, the
IEEE754-defined default results are returned. All rounding modes are supported, and
basic single and basic double formats are used.

For full compliance, support code is required to handle arithmetic where operands or
results are de-normals. This support code is normally installed on the Undefined
instruction exception handler.

Table 1-1 Double-precision VFP operations

Instruction types Issue latency

DP MUL and MAC 2 cycles

SP DIV, SQRT 14 cycles

DP DIV, SQRT 28 cycles

All other instructions 1 cycle
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-15
Unrestricted Access Non-Confidential

Introduction
Flush-to-zero mode

A flush-to-zero mode is provided where a default treatment of de-normals is applied.
Table 1-2 shows the default behavior in flush-to-zero mode.

Operations not supported

The following operations are not directly supported by the VFP:

• remainder

• binary (decimal) conversions

• direct comparisons between single and double-precision values.

These are normally implemented as C library functions.

1.4.3 System control

The control of the memory system and its associated functionality, and other
system-wide control attributes are managed through a dedicated system control
coprocessor, CP15. See Chapter 3 Control Coprocessor CP15 for more details.

1.4.4 Interrupt handling

Interrupt handling in the processor is compatible with previous ARM architectures, but
has several additional features to improve interrupt performance at interrupt generation
and at interrupt handling levels.

Note
 The nIRQ and nFIQ signals are level-sensitive and must be held LOW until a suitable
interrupt response is received from the processor.

Table 1-2 Flush-to-zero mode

Operation Flush-to-zero

De-normal operand(s) Treated as 0+

Inexact flag set

De-normal result Returned as 0+

Inexact flag set
1-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
Exception processing enhancements

The ARMv6 architecture contains several enhancements to exception processing, to
reduce interrupt handler entry and exit time:

SRS Save return state to a specified stack frame.

RFE Return from exception.

CPS Directly modify the CPSR.

Interrupt generation enhancements

The Distributed Interrupt Controller prioritizes and routes interrupts from various
sources and redirects them to MP11 CPUs. See Chapter 10 MPCore Distributed
Interrupt Controller.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-17
Unrestricted Access Non-Confidential

Introduction
1.5 Power management

The MP11 CPUs include several features to reduce energy consumption:

• Accurate branch and return prediction, reducing the number of incorrect
instruction fetch and decode operations.

• Use of physically tagged caches that reduce the number of cache flushes and
refills, to save energy in the system.

• The use of MicroTLBs reduces the power consumed in translation and protection
lookups for each memory access.

• The caches use sequential access information to reduce the number of accesses to
the tag RAMs and to unmatched data RAMs.

• Extensive use of gated clocks and gates to disable inputs to unused functional
blocks. Because of this, only the logic actively in use to perform a calculation
consumes any dynamic power.

The MP11 CPUs support the following levels of power management:

Run mode This mode is the normal mode of operation where all of the functionality
of the MP11 CPU is available.

Standby mode

This mode disables most of the clocks of the device, while keeping the
device powered up. This reduces the power drawn to the static leakage
current, plus a tiny clock power overhead required to enable the device to
wake up from the standby state. The transition from the standby mode to
the run mode is caused by one of the following:

• an interrupt, either masked or unmasked

• a debug request, regardless of whether debug is enabled

• reset.

Dormant mode

This mode enables the MP11 CPU to be powered down, while leaving the
caches powered up and maintaining their state. The following are
required for full implementation of dormant mode:

• modification of the RAMs to include an input clamp

• implementation of separate power domains.
1-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
Shutdown mode

This mode has the entire MP11 CPU powered down. All state, including
cache state, must be saved externally. The CPU is returned to the run state
by the assertion of reset. This state saving is performed with interrupts
disabled, and finishes with a Data Synchronization Barrier operation. The
MP11 CPU then communicates with the power controller that it is ready
to be powered down.

See Chapter 11 Clocking, Resets, and Power Management for more information on
power management features.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-19
Unrestricted Access Non-Confidential

Introduction
1.6 Configurable options

Table 1-3 shows the processor configurable options.

The default configuration of the processor is a four MP11 CPU configuration. Table 1-4
shows the default configuration of the processor.

For more information on configuring your processor, see the ARM11 MPCore
Processor Configuration and Sign-off Guide.

Table 1-3 Configurable options for the ARM11 MPCore processor

Feature Range of options

MP11 CPUs One to four

Instruction cache size per MP11 CPU 16KB, 32KB, or 64KB

Data cache size per MP11 CPU 16KB, 32KB, or 64KB

Master ports One or two

Width of interrupt bus 0-224 by increments of 32 pins

VFP per MP11 CPU Included or not

Wrappers for power off and dormant modes Included or not

Parity support Included or not

Table 1-4 Default configuration for the ARM11 MPCore processor

Feature Default value

MP11 CPUs Four

Instruction cache size per MP11 CPU 32KB

Data cache size per MP11 CPU 32KB

Master ports Two

Width of interrupt bus 32 pins

VFP per MP11 CPU Included

Wrappers for power off and dormant modes Not included

Parity support Not included
1-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
You must configure the MBIST solution you choose to match the chosen MPCore cache
sizes. In addition, the form of the MBIST solution for the RAM blocks in the MPCore
design is determined when the processor is implemented. For details, see Appendix C
MBIST Controller and Dispatch Unit and the ARM11 MPCore Processor Configuration
and Sign-off Guide.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-21
Unrestricted Access Non-Confidential

Introduction
1.7 Pipeline stages

Figure 1-2 shows:

• the two Fetch stages

• a Decode stage

• an Issue stage

• the four stages of the MP11 CPU integer execution pipeline.

These eight stages make up the MP11 CPU pipeline.

Figure 1-2 MP11 CPU pipeline stages

The pipeline stages are:

Fe1 First stage of instruction fetch and branch prediction.

Fe2 Second stage of instruction fetch and branch prediction.

De Instruction decode.

Iss Register read and instruction issue.

Sh Shifter stage.

ALU Main integer operation calculation.

Sat Pipeline stage to enable saturation of integer results.

WBex Write back of data from the multiply or main execution pipelines.

MAC1 First stage of the multiply-accumulate pipeline.

MAC2 Second stage of the multiply-accumulate pipeline.

MAC3 Third stage of the multiply-accumulate pipeline.

ADD Address generation stage.

DC1 First stage of data cache access.

DC2 Second stage of data cache access.

WBls Write back of data from the Load Store Unit.

1st fetch
stage

2nd fetch
stage

Instruction
decode

Reg. read
and issue

Shifter
stage

ALU
operation

Saturation
stage

Writeback
Mul/ALU

Fe1 Fe2 De Iss Sh ALU Sat WBex

1st multiply
acc. stage

2nd multiply
acc. stage

MAC1 MAC2 MAC3

Address
generation

Data
cache 1

Data
cache 2

Writeback
from LSU

ADD DC1 DC2 WBls

3rd multiply
acc. stage
1-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
By overlapping the various stages of operation, the MP11 CPU maximizes the clock
rate achievable to execute each instruction. It delivers a throughput approaching one
instruction for each cycle.

The Fetch stages can hold up to four instructions, where branch prediction is performed
on instructions ahead of execution of earlier instructions.

The Issue and Decode stages can contain any instruction in parallel with a predicted
branch.

The Execute, Memory, and Write stages can contain a predicted branch, an ALU or
multiply instruction, a load/store multiple instruction, and a coprocessor instruction in
parallel execution.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-23
Unrestricted Access Non-Confidential

Introduction
1.8 Typical pipeline operations

Figure 1-3 shows all the operations in each of the pipeline stages in the ALU pipeline,
the load/store pipeline, and the HUM buffers.

Figure 1-3 Typical operations in pipeline stages

Figure 1-4 on page 1-25 shows a typical ALU data processing instruction. The
load/store pipeline and the HUM buffer are not used.

1st fetch
stage

Fe1 Fe2 De Iss

MAC1 MAC2 MAC3

WBex

DC1 DC2

2nd fetch
stage

Instruction
decode

Register
read and

instruction
issue 1st

multiply
stage

2nd
multiply
stage

3rd
multiply
stage

Base
register

writeback

Data
address

calculation

First stage
of data
cache
access

Second
stage of

data cache
access

Writeback
from LSU

Load
miss
waits

ADD WBls

A
LU

pi

pe
lin

e
Lo

ad
/s

to
re

pi

pe
lin

e
H

it
un

de
r

m
is

s

Sh ALU Sat

Shifter
operation

Calculate
writeback

value
Saturation

Ex1 Ex2 Ex3

Common decode pipeline M
ul

tip
ly

pi
pe

lin
e

1-24 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
Figure 1-4 Typical ALU operation

Figure 1-5 on page 1-26 shows a typical multiply operation. The MUL instruction can
loop in the MAC1 stage until it has passed through the first part of the multiplier array
enough times. Then it progresses to MAC2 and MAC3 where it passes once through the
second half of the array to produce the final result.

1st fetch
stage

Fe1 Fe2 De Iss

MAC1 MAC2 MAC3

WBex

DC1 DC2

2nd fetch
stage

Instruction
decode

Register
read and

instruction
issue

Not used Not used Not used

Base register
writeback

Not used Not used Not used Not used

Not used

ADD WBls

A
LU

pi

pe
lin

e
Lo

ad
/s

to
re

pi

pe
lin

e
H

it
un

de
r

m
is

s

Sh ALU Sat

Shifter
operation

Calculate
writeback

value
Saturation

Ex1 Ex2 Ex3

Common decode pipeline M
ul

tip
ly

pi
pe

lin
e

ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-25
Unrestricted Access Non-Confidential

Introduction
Figure 1-5 Typical multiply operation

1st fetch
stage

Fe1 Fe2 De Iss

MAC1 MAC2 MAC3

WBex

DC1 DC2

2nd fetch
stage

Instruction
decode

Register
read and

instruction
issue

1st multiply
stage

2nd multiply
stage

3rd multiply
stage

Base register
writeback

Not used Not used Not used Not used

Not used

ADD WBls

A
LU

pi

pe
lin

e
Lo

ad
/s

to
re

pi

pe
lin

e
H

it
un

de
r

m
is

s

Sh ALU Sat

Not used Not used Not used

Ex1 Ex2 Ex3

Common decode pipeline M
ul

tip
ly

pi
pe

lin
e

1-26 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
1.8.1 Instruction progression

Figure 1-6 shows an LDR/STR operation that hits in the data cache.

Figure 1-6 Progression of an LDR/STR operation

Figure 1-7 on page 1-28 shows the progression of an LDM/STM operation using the
load/store pipeline to complete. Other instructions can use the ALU pipeline at the same
time as the LDM/STM completes in the load/store pipeline.

1st fetch
stage

Fe1 Fe2 De Iss

MAC1 MAC2 MAC3

WBex

DC1 DC2

2nd fetch
stage

Instruction
decode

Register
read and

instruction
issue

Not used Not used Not used

Base register
writeback

Data address
calculation

First stage of
data cache

access

Second
stage of data

cache
access

Writeback
from LSU

Not used

ADD WBls

A
LU

pi

pe
lin

e
Lo

ad
/s

to
re

pi

pe
lin

e
H

it
un

de
r

m
is

s

Sh ALU Sat

Shifter
operation

Calculate
writeback

value
Saturation

Ex1 Ex2 Ex3

Common decode pipeline M
ul

tip
ly

pi
pe

lin
e

ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-27
Unrestricted Access Non-Confidential

Introduction
Figure 1-7 Progression of an LDM/STM operation

Figure 1-8 on page 1-29 shows the progression of an LDR that misses. When the LDR
is in the HUM buffers, other instructions, including independent loads that hit in the
cache, can run under it.

1st fetch
stage

Fe1 Fe2 De Iss

MAC1 MAC2 MAC3

WBex

DC1 DC2

2nd fetch
stage

Instruction
decode

Register
read and

instruction
issue

Not used Not used Not used

Base register
writeback

Data address
calculation

First stage of
data cache

access

Second
stage of data

cache
access

Writeback
from LSU

Not used
unless a

miss occurs

ADD WBls

A
LU

pi

pe
lin

e
Lo

ad
/s

to
re

pi

pe
lin

e
H

it
un

de
r

m
is

s

Sh ALU Sat

Shifter
operation

Calculate
writeback

value
Saturation

Ex1 Ex2 Ex3

Common decode pipeline M
ul

tip
ly

pi
pe

lin
e

1-28 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
Figure 1-8 Progression of an LDR that misses

See Chapter 15 Cycle Timings and Interlock Behavior for details of instruction cycle
timings.

1st fetch
stage

Fe1 Fe2 De Iss

MAC1 MAC2 MAC3

WBex

DC1 DC2

2nd fetch
stage

Instruction
decode

Register
read and

instruction
issue

Not used Not used Not used

Base register
writeback

Data address
calculation

First stage of
data cache

access

Second
stage of data

cache
access

Writeback
from LSU

Load

ADD WBls

A
LU

pi

pe
lin

e
Lo

ad
/s

to
re

pi

pe
lin

e
H

it
un

de
r

m
is

s

Sh ALU Sat

Shifter
operation

Calculate
writeback

value
Saturation

Ex1 Ex2 Ex3

Common decode pipeline M
ul

tip
ly

pi
pe

lin
e

1 2 3 4

5

5

6

6

7

8

9, 10

11 12
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-29
Unrestricted Access Non-Confidential

Introduction
1.9 MPCore architecture with Jazelle technology

The processor has these instruction sets:

• the 32-bit ARM instruction set used in ARM state, with media instructions

• the 16-bit Thumb instruction set used in Thumb state

• the 8-bit Java bytecodes used in Jazelle state.

For details of both the ARM and Thumb instruction sets, see the ARM Architecture
Reference Manual.

1.9.1 Instruction compression

A typical 32-bit architecture can manipulate 32-bit integers with single instructions, and
address a large address space much more efficiently than a 16-bit architecture. When
processing 32-bit data, a 16-bit architecture takes at least two instructions to perform
the same task as a single 32-bit instruction.

When a 16-bit architecture has only 16-bit instructions, and a 32-bit architecture has
only 32-bit instructions, overall the 16-bit architecture has higher code density, and
greater than half the performance of the 32-bit architecture.

Thumb implements a 16-bit instruction set on a 32-bit architecture, giving higher
performance than on a 16-bit architecture, with higher code density than a 32-bit
architecture.

The processor gives you the choice of running in ARM state, or Thumb state, or a mix
of the two for each individual MP11 CPU. This enables you to optimize both code
density and performance to best suit your application requirements.

1.9.2 The Thumb instruction set

The Thumb instruction set is a subset of the most commonly used 32-bit ARM
instructions. Thumb instructions are 16 bits long, and have a corresponding 32-bit ARM
instruction that has the same effect on the processor model. Thumb instructions operate
with the standard ARM register configuration, enabling excellent interoperability
between ARM and Thumb states.

Thumb has all the advantages of a 32-bit core:

• 32-bit address space

• 32-bit registers

• 32-bit shifter and Arithmetic Logic Unit (ALU)

• 32-bit memory transfer.
1-30 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
Thumb therefore offers a long branch range, powerful arithmetic operations, and a large
address space.

The availability of both 16-bit Thumb and 32-bit ARM instruction sets gives you the
flexibility to emphasize performance or code size on a subroutine level, according to the
requirements of their applications. For example, critical loops for applications such as
fast interrupts and DSP algorithms can be coded using the full ARM instruction set, and
linked with Thumb code.

1.9.3 Java bytecodes

ARM architecture v6 with Jazelle technology executes variable length Java bytecodes.
Java bytecodes fall into two classes:

Hardware execution

Bytecodes that perform stack-based operations.

Software execution

Bytecodes that are too complex to execute directly in hardware are
executed in software. An ARM register is used to access a table of
exception handlers to handle these particular bytecodes.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-31
Unrestricted Access Non-Confidential

Introduction
1.10 Parity checking support

All RAM instances in the MP11 CPUs are checked against soft error by a parity
checking mechanism. Parity checking for each MP11 CPU is enabled by setting bit[6]
of the c1, Auxiliary Control Register. See c1, Auxiliary Control Register on page 3-33
for information on L1 parity checking support. Parity checking for SCU tag RAMs is
enabled by setting bit[13] of the SCU Control Register. See SCU Control Register on
page 9-4 for information on SCU parity checking support.

Note
 • Before enabling parity checking, all caches and SCU tag RAMs must be

invalidated.

• The parity checking enable bits are used to mask parity error signalling only.
Parity information in the RAMs is always generated and kept up-to-date so that
parity checking does not need to be enabled at a particular time.

• Parity errors on the Branch Target Address Cache (BTAC) are for information
only because the branch prediction mechanism is self-recovering in case of errors
in the BTAC.
1-32 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction
1.11 Product revisions

This manual is for revision r2p0 of the ARM11 MPCore processor. See Product revision
status on page xxvi for details of revision numbering. This section summarizes the
differences in functionality between the releases of this processor:

r0p1 First release.

r0p1-r0p2 No change to the functionality described in this manual.

r0p2-r0p3 No change to the functionality described in this manual.

r0p3-r1p0 Changes to functionality are the addition of:

• Bits[12:1] of the SCU Control Register to enable or disable access
to the SCU configuration registers for each CPU. These bits also
ensure that no CPU can lock out all other CPUs. See SCU Control
Register on page 9-4.

• Interrupt Line Level Registers at 0xD00-0xD1C that enable software
to inspect each I/O port. These registers also ensure that the status
of an interrupt is visible even if it is masked. See Interrupt Line
Level Registers, 0xD00-0xD1C on page 10-18.

• A Trace Interface Port as described in Chapter 14 Trace Interface
Port. The debug interface is modified to support ETM. See Debug
interface signals on page A-9.

• Test clock signal, ICTSTCLK, for distributed interrupt controller.
See Miscellaneous signals on page A-13.

r1p0 - r2p0 Changes to functionality are the addition of:

• Bit[6] of the Auxiliary Control Register to enable or disable L1
parity checking. See c1, Auxiliary Control Register on page 3-33.

• Bit[13] of the SCU Control Register to enable or disable SCU
parity checking. See SCU Control Register on page 9-4.

• Export for full JTAG interface per MP11 CPU.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 1-33
Unrestricted Access Non-Confidential

Introduction
1-34 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 2
Programmers Model

This chapter describes the MPCore registers and provides information for programming
the microprocessor. It contains the following sections:

• About the programmers model on page 2-2

• Processor operating states on page 2-3

• Instruction length on page 2-4

• Data types on page 2-5

• Memory formats on page 2-6

• Addresses in an MPCore system on page 2-8

• Operating modes on page 2-10

• Registers on page 2-11

• The program status registers on page 2-17

• Exceptions on page 2-24.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-1
Unrestricted Access Non-Confidential

Programmers Model
2.1 About the programmers model

The ARM11 MPCore processor implements ARM architecture v6K with Java
extensions. This includes the 32-bit ARM instruction set, 16-bit Thumb instruction set,
and the 8-bit Java instruction set. For details of both the ARM and Thumb instruction
sets, see the ARM Architecture Reference Manual.
2-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
2.2 Processor operating states

The processor has three operating states:

ARM state 32-bit, word-aligned ARM instructions are executed in this state.

Thumb state 16-bit, halfword-aligned Thumb instructions.

Jazelle state Variable length, byte-aligned Java bytecodes.

In Thumb state, the Program Counter (PC) uses bit 1 to select between alternate
halfwords. In Jazelle state, all instruction fetches are in words.

Note
 Transition between ARM and Thumb states does not affect the processor mode or the
register contents.

2.2.1 Switching state

You can switch the operating state of the processor between:

• ARM state and Thumb state using the BX and BLX instructions, and loads to the PC.
Switching state is described in the ARM Architecture Reference Manual.

• ARM state and Jazelle state using the BXJ instruction.

All exceptions are entered, handled, and exited in ARM state. If an exception occurs in
Thumb state or Jazelle state, the processor reverts to ARM state. Exception return
instructions restore the SPSR to the CPSR, which can also cause a transition back to
Thumb state or Jazelle state.

2.2.2 Interworking ARM and Thumb state

The processor enables you to mix ARM and Thumb code. For more information see the
RealView Compilation Tools Developer Guide.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-3
Unrestricted Access Non-Confidential

Programmers Model
2.3 Instruction length

Instructions are one of:

• 32 bits long (in ARM state)

• 16 bits long (in Thumb state)

• variable length, multiples of 8 bits (in Jazelle state).
2-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
2.4 Data types

The processor supports the following data types:

• word (32-bit)

• halfword (16-bit)

• byte (8-bit).

In addition, long multiplies support 64-bit results with or without accumulation.

Note
 • When any of these types are described as unsigned, the N-bit data value represents

a non-negative integer in the range 0 to +2N-1, using normal binary format.

• When any of these types are described as signed, the N-bit data value represents
an integer in the range -2N-1 to +2N-1-1, using two’s complement format.

• Where the results of signed and unsigned versions of an instruction differ, both
versions are usually provided. The main exception is that both versions are
provided for only some of the multiply and multiply-accumulate instructions.

For best performance you must align these as follows:

• word quantities must be aligned to four-byte boundaries

• halfword quantities must be aligned to two-byte boundaries

• byte quantities can be placed on any byte boundary.

Note
 You cannot use LDRD, LDM, LDC, STRD, STM, or STC instructions to access 32-bit quantities if
they are unaligned.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-5
Unrestricted Access Non-Confidential

Programmers Model
2.5 Memory formats

The processor views memory as a linear collection of bytes numbered in ascending
order from zero. Bytes 0-3 hold the first stored word, and bytes 4-7 hold the second
stored word, for example.

The processor can treat words in memory as either:

• 32-bit byte-invariant BE-8 format

• Little-endian format.

2.5.1 32-bit byte-invariant BE-8 format

In a byte-invariant system, the address of each byte of memory remains unchanged
when switching between little-endian and big-endian operation. When a data item
larger than a byte is loaded from or stored to memory, the bytes making up that data item
are arranged into the correct order depending on the endianness of the memory access.
Figure 2-1 shows the most significant byte of words at the lowest-numbered bytes.

Figure 2-1 Big-endian addresses of bytes within words

2.5.2 Little-endian format

In little-endian format, the lowest-numbered byte in a word is the least significant byte
of the word and the highest-numbered byte is the most significant. Therefore, byte 0 of
the memory system connects to data lines 7-0. Figure 2-2 on page 2-7 shows this.

31 24 23 16 15 8 7 Word address0

4

0

8Higher address

Lower address

• Most significant byte is at lowest address

• Word is addressed by byte address of most significant byte

Bit

111098

7654

3210
2-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
Figure 2-2 Little-endian addresses of bytes within words

31 24 23 16 15 8 7 Word address0

4

0

8Higher address

Lower address

• Least significant byte is at lowest address

• Word is addressed by byte address of least significant byte

Bit

891011

4567

0123
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-7
Unrestricted Access Non-Confidential

Programmers Model
2.6 Addresses in an MPCore system

Three distinct types of address exist in an MPCore system:

• Virtual Address (VA)

• Modified Virtual Address (MVA)

• Physical Address (PA).

Table 2-1 shows the address types in an MPCore system.

This is an example of the address manipulation that occurs when an MP11 CPU
requests an instruction:

1. The MP11 CPU integer core issues the VA of the instruction.

2. The lower bits of the VA index the instruction cache. The VA is translated using
the ProcID to the MVA, and then to PA in the Translation Lookaside Buffer
(TLB). The TLB performs the translation in parallel with the cache lookup.

3. If the TLB performs a successful protection check on the MVA, and the PA tag is
in the instruction cache, the instruction data is returned to the MP11 CPU integer
core.

4. The PA is passed to the AMBA bus interface to perform an external access, in the
event of a cache miss.

This is an example of the address manipulation that occurs when the MP11 CPU
performs a data read.

1. The VA of the data access is issued by the MP11 CPU integer core.

2. The VA is translated using the ProcID to the MVA, and then to PA in the TLB.

3. If the protection check carried out by the TLB on the MVA does not abort, the data
access is processed in the L1 memory system based on its memory attributes
retrieved in step 2.

4. If an external access is required, the Physical Address retrieved in step 2 is used
to perform an access on the AMBA bus.

Table 2-1 Address types in an MPCore system

MP11 CPU integer
core

Caches
TLBs AMBA bus

Instruction Data

Virtual Address Virtual index physical
tag

Physical index
physical tag

Translates Virtual Address to
Physical Address

Physical Address
2-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
Note
 MVA and VA are equal unless the Fast Context Switch Extensions are used. The use of
the FCSE PID Register is deprecated. See c13, FCSE PID Register on page 3-62.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-9
Unrestricted Access Non-Confidential

Programmers Model
2.7 Operating modes

In all states there are seven modes of operation:

• User mode is the usual ARM program execution state, and is used for executing
most application programs

• Fast interrupt (FIQ) mode is used for handling fast interrupts

• Interrupt (IRQ) mode is used for general-purpose interrupt handling

• Supervisor mode is a protected mode for the operating system

• Abort mode is entered after a data or instruction Prefetch Abort

• System mode is a privileged user mode for the operating system

• Undefined mode is entered when an Undefined instruction exception occurs.

Modes other than User mode are collectively known as privileged modes. Privileged
modes are used to service interrupts or exceptions, or to access protected resources.
2-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
2.8 Registers

The processor has a total of 37 registers:

• 31 general-purpose 32-bit registers

• six 32-bit status registers.

These registers are not all accessible at the same time. The processor state and operating
mode determine which registers are available to the programmer.

2.8.1 The ARM state register set

In ARM state, 16 general registers and one or two status registers are accessible at any
time. In privileged modes, mode-specific banked registers become available. Figure 2-3
on page 2-13 shows which registers are available in each mode.

The ARM state register set contains 16 directly-accessible registers, r0-r15. Another
register, the Current Program Status Register (CPSR), contains condition code flags,
status bits, and current mode bits. Registers r0-r13 are general-purpose registers used to
hold either data or address values. Registers r14, r15, and the Saved Program Status
Register (SPSR) have the following special functions:

Link Register Register r14 is used as the subroutine Link Register (LR).

Register r14 receives the return address when a Branch with Link
(BL or BLX) instruction is executed.

You can treat r14 as a general-purpose register at all other times.
Similarly, the corresponding banked registers r14_svc, r14_irq,
r14_fiq, r14_abt, and r14_und hold the return values when the
processor receives interrupts and exceptions, or when it executes
BL or BLX instructions within interrupt or exception routines.

Program Counter Register r15 holds the PC:

• in ARM state this is word-aligned

• in Thumb state this is halfword-aligned

• in Jazelle state this is byte-aligned.

Saved Program Status Register

In privileged modes, another register, the Saved Program Status
Register (SPSR), is accessible. This contains the condition code
flags, status bits, and current mode bits saved as a result of the
exception that caused entry to the current mode.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-11
Unrestricted Access Non-Confidential

Programmers Model
Banked registers have a mode identifier that indicates which mode they relate to.
Table 2-2 shows these mode identifiers.

The usr mode identifier is usually omitted from register names. It is only used in
descriptions where the User or System mode register is specifically accessed from
another operating mode.

FIQ mode has seven banked registers mapped to r8–r14, that is, r8_fiq through r14_fiq.
As a result many FIQ handlers do not have to save any registers.

The Supervisor, Abort, IRQ, and Undefined modes have alternative mode-specific
registers mapped to r13 and r14, that permits a private stack pointer and link register for
each mode.

Figure 2-3 on page 2-13 shows the ARM state registers.

Table 2-2 Register mode identifiers

Mode Mode identifier

User usr

Fast interrupt fiq

Interrupt irq

Supervisor svc

Abort abt

System usr

Undefined und
2-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
Figure 2-3 Register organization in ARM state

Figure 2-4 on page 2-14 shows an alternative view of the ARM registers.

ARM state general registers and program counter

System and User

ARM state program status registers

= banked register

Supervisor Abort IRQ Undefined

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

FIQ

r0

r1

r2

r3

r4

r5

r6

r7

r8_fiq

r9_fiq

r10_fiq

r11_fiq

r12_fiq

r13_fiq

r14_fiq

r15 (PC)

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13_svc

r14_svc

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13_abt

r14_abt

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13_irq

r14_irq

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13_und

r14_und

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

r15 (PC) r15 (PC) r15 (PC) r15 (PC)
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-13
Unrestricted Access Non-Confidential

Programmers Model
Figure 2-4 MPCore register set showing banked registers

2.8.2 The Thumb state register set

The Thumb state register set is a subset of the ARM state set. The programmer has
direct access to:

• eight general registers, r0–r7 (for details of high register access in Thumb state,
see Accessing high registers in Thumb state on page 2-15)

• the PC

• a stack pointer, SP (ARM r13)

• an LR (ARM r14)

• the CPSR.

16 general-purpose

registers + 1 status

register

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r8_fiq

r9_fiq

r10_fiq

r11_fiq

r12_fiq

r13_fiq

r14_fiq

r15 (PC)

r13_svc

r14_svc

r13_abt

r14_abt

r13_irq

r14_irq

r13_und

r14_und

CPSR SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

3
1

g
e
n
e
ra

l-
p
u
rp

o
s
e

re
g
s
it
e
rs

20 mode-specific replacement registers (banked registers)

15 banked general-purpose registers + 5 banked status registers

6
s
ta

tu
s

re
g
is

te
rs
2-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
There are banked SPs, LRs, and SPSRs for each privileged mode. Figure 2-5 shows the
organization of Thumb state register set.

Figure 2-5 Register organization in Thumb state

2.8.3 Accessing high registers in Thumb state

In Thumb state, the high registers, r8–r15, are not part of the standard register set. You
can use special variants of the MOV instruction to transfer a value from a low register, in
the range r0–r7, to a high register, and from a high register to a low register. The CMP
instruction enables you to compare high register values with low register values. The
ADD instruction enables you to add high register values to low register values. For more
details, see the ARM Architecture Reference Manual.

2.8.4 ARM state and Thumb state registers relationship

Figure 2-6 on page 2-16 shows the relationships between the Thumb state and ARM
state registers.

Thumb state general registers and program counter

System and User

Thumb state program status registers

= banked register

Supervisor Abort IRQ Undefined

r0

r1

r2

r3

r4

r5

r6

r7

SP

LR

PC

FIQ

r0

r1

r2

r3

r4

r5

r6

r7

SP_fiq

LR_fiq

PC

r0

r1

r2

r3

r4

r5

r6

r7

SP_svc

LR_svc

PC

r0

r1

r2

r3

r4

r5

r6

r7

SP_abt

LR_abt

PC

r0

r1

r2

r3

r4

r5

r6

r7

SP_irq

LR_irq

PC

r0

r1

r2

r3

r4

r5

r6

r7

SP_und

LR_und

PC

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-15
Unrestricted Access Non-Confidential

Programmers Model
Figure 2-6 ARM state and Thumb state registers relationship

Note
 Registers r0–r7 are known as the low registers. Registers r8–r15 are known as the high
registers.

Thumb state ARM state

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9

r10
r11
r12

Stack pointer (r13)
Link register (r14)

Program counter (r15)
CPSR
SPSR

Stack pointer (SP)
Link register (LR)

Program counter (PC)
CPSR
SPSR

r0
r1
r2
r3
r4
r5
r6
r7

Low registers

High registers
2-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
2.9 The program status registers

The processor contains one CPSR, and five SPSRs for exception handlers to use. The
program status registers:

• hold information about the most recently performed ALU operation

• control the enabling and disabling of interrupts

• set the processor operating mode.

Figure 2-7 shows the arrangement of bits in the status registers. These are described in
the sections from The condition code flags to Reserved bits on page 2-23 inclusive.

Figure 2-7 Program status register

Note
 The bits identified in Figure 2-7 as Do Not Modify (DNM) Read As Zero (RAZ) must
not be modified by software. These bits are:

• Readable, to enable the processor state to be preserved, for example, during
process context switches

• Writable, to enable the processor state to be restored. To maintain compatibility
with future ARM processors, and as good practice, use a read-modify-write
strategy when changing the CPSR.

2.9.1 The condition code flags

The N, Z, C, and V bits are the condition code flags. They can be set by arithmetic and
logical operations, and also by MSR and LDM instructions. The processor tests these flags
to determine whether to execute an instruction.

Sticky overflow
Overflow
Carry/Borrow/Extend
Zero
Negative/Less than

Mode bits
State bit
FIQ disable
IRQ disable
Imprecise abort bit
Data endianess bit

N

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5 4 0

Z C V Q J DNM
(RAZ) 0 GE[3:0] DNM

(RAZ) E A I F T M[4:0]

DNM (RAZ)
Java bit

Greater than or
equal to
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-17
Unrestricted Access Non-Confidential

Programmers Model
In ARM state, most instructions can execute conditionally on the state of the N, Z, C,
and V bits. The exceptions are:

• BKPT

• CDP2

• CPS

• LDC2

• MCR2

• MCRR2

• MRC2

• MRRC2

• PLD

• SETEND

• RFE

• SRS

• STC2.

In Thumb state, only the Branch instruction can be executed conditionally. For more
details about conditional execution, see the ARM Architecture Reference Manual.

2.9.2 The Q flag

The Sticky Overflow (Q) flag can be set by certain multiply and fractional arithmetic
instructions:

• QADD

• QDADD

• QSUB

• QDSUB

• SMLAD

• SMLAxy

• SMLAWy

• SMLSD

• SMUAD

• SSAT

• SSAT16

• USAT

• USAT16.

The Q flag is sticky in that, when set by an instruction, it remains set until explicitly
cleared by an MSR instruction writing to the CPSR. Instructions cannot execute
conditionally on the status of the Q flag.
2-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
To determine the status of the Q flag you must read the PSR into a register and extract
the Q flag from this. For details of how the Q flag is set and cleared, see individual
instruction definitions in the ARM Architecture Reference Manual.

2.9.3 The J bit

 The J bit in the CPSR indicates when an MP11 CPU is in Jazelle state.

When:

J = 0 The processor is in ARM or Thumb state, depending on the T bit.

J = 1 The processor is in Jazelle state.

Note
 • The combination of J = 1 and T = 1 causes similar effects to setting T=1 on a non

Thumb-aware processor. That is, the next instruction executed causes entry to the
Undefined instruction exception. Entry to the exception handler causes the
processor to re-enter ARM state, and the handler can detect that this was the cause
of the exception because J and T are both set in SPSR_und.

• MSR cannot be used to change the J bit in the CPSR.

• The placement of the J bit avoids the status or extension bytes in code running on
ARMv5TE or earlier processors. This ensures that OS code written using the
deprecated CPSR, SPSR, CPSR_all, or SPSR_all syntax for the destination of an
MSR instruction continues to work.

2.9.4 The GE[3:0] bits

Some of the SIMD instructions set GE[3:0] as greater-than-or-equal bits for individual
halfwords or bytes of the result. Table 2-3 shows this.

Table 2-3 GE[3:0] settings

GE[3] GE[2] GE[1] GE[0]

Instruction A op B > C A op B > C A op B > C A op B > C

Signed

SADD16 [31:16] + [31:16] ≥ 0 [31:16] + [31:16] ≥ 0 [15:0] + [15:0] ≥ 0 [15:0] + [15:0] ≥ 0

SSUB16 [31:16] - [31:16] ≥ 0 [31:16] - [31:16] ≥ 0 [15:0] - [15:0] ≥ 0 [15:0] - [15:0] ≥ 0

SADDSUBX [31:16] + [15:0] ≥ 0 [31:16] + [15:0] ≥ 0 [15:0] - [31:16] ≥ 0 [15:0] - [31:16] ≥ 0
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-19
Unrestricted Access Non-Confidential

Programmers Model
Note
 GE bit is 1 if A op B ≥ C, otherwise 0.

The SEL instruction uses GE[3:0] to select which source register supplies each byte of
its result.

2.9.5 The E bit

The E bit controls load/store endianness. ARM and Thumb instructions are provided to
set and clear the E-bit.

Architecture versions prior to ARMv6 specify this bit as SBZ. This ensures no
endianness reversal on loads or stores.

2.9.6 The A bit

The A bit is used to disable imprecise Data Aborts. It is set automatically. For details of
how to use the A bit, see Imprecise Data Abort mask in the CPSR/SPSR on page 2-30.

SSUBADDX [31:16] - [15:0] ≥ 0 [31:16] - [15:0] ≥ 0 [15:0] + [31:16] ≥ 0 [15:0] + [31:16] ≥ 0

SADD8 [31:24] + [31:24] ≥ 0 [23:16] + [23:16] ≥ 0 [15:8] + [15:8] ≥ 0 [7:0] + [7:0] ≥ 0

SSUB8 [31:24] - [31:24] ≥ 0 [23:16] - [23:16] ≥ 0 [15:8] - [15:8] ≥ 0 [7:0] - [7:0] ≥ 0

Unsigned

UADD16 [31:16] + [31:16] ≥ 216 [31:16] + [31:16] ≥ 216 [15:0] + [15:0] ≥ 216 [15:0] + [15:0] ≥ 216

USUB16 [31:16] - [31:16] ≥ 0 [31:16] - [31:16] ≥ 0 [15:0] - [15:0] ≥ 0 [15:0] - [15:0] ≥ 0

UADDSUBX [31:16] + [15:0] ≥ 216 [31:16] + [15:0] ≥ 216 [15:0] - [31:16] ≥ 0 [15:0] - [31:16] ≥ 0

USUBADDX [31:16] - [15:0] ≥ 0 [31:16] - [15:0] ≥ 0 [15:0] + [31:16] ≥ 216 [15:0] + [31:16] ≥216

UADD8 [31:24] + [31:24] ≥ 28 [23:16] + [23:16] ≥ 28 [15:8] + [15:8] ≥ 28 [7:0] + [7:0] ≥ 28

USUB8 [31:24] - [31:24] ≥ 0 [23:16] - [23:16] ≥ 0 [15:8] - [15:8] ≥ 0 [7:0] - [7:0] ≥ 0

Table 2-3 GE[3:0] settings (continued)

GE[3] GE[2] GE[1] GE[0]

Instruction A op B > C A op B > C A op B > C A op B > C
2-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
2.9.7 The control bits

The bottom eight bits of a PSR are known collectively as the control bits. They are the:

• Interrupt disable bits

• T bit

• Mode bits on page 2-22.

The control bits change when an exception occurs. When the processor is operating in
a privileged mode, software can manipulate these bits.

Interrupt disable bits

The I and F bits are the interrupt disable bits:

• when the I bit is set, IRQ interrupts are disabled

• when the F bit is set, FIQ interrupts are disabled.

MP11 CPUs also have Non Maskable Fast Interrupt (NMFI). NMFI behavior is as
follows:

• Values can be read from bit 27 in CP15 register c1, the NMFI bit.

1 = FIQs behave as NMFIs

0 = Normal FIQ behavior.

• Only FIQISNMI controls this behavior. There is no software control.

• All instruction-generated writes of a value to the CPSR F-bit are changed to AND
the new value into the F bit. In other words, writes of 0 clear the F bit and writes
of 1 leave it unchanged.

• The CPSR F-bit is set only by taking an FIQ exception. Other methods of entering
FIQ mode, such as using MSR to write 0'b10001 to the CPSR mode bits, do not
cause the F bit to become set nor permit instructions to set it.

T bit

The T bit reflects the operating state:

• when the T bit is set, the processor is executing in Thumb state

• when the T bit is clear, the processor is executing in ARM state, or Jazelle state
depending on the J bit.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-21
Unrestricted Access Non-Confidential

Programmers Model
Note
 Never use an MSR instruction to force a change to the state of the T bit in the CPSR. If
an MSR instruction tries to modify this bit, the result is architecturally Unpredictable. In
the processor, writes to this bit are ignored.

Mode bits

Caution
 An illegal value programmed into M[4:0] causes the processor to enter an
unrecoverable state. If this occurs, you must apply reset. Not all combinations of the
mode bits define a valid processor mode, so take care to use only those bit combinations
shown.

Table 2-4 shows the M[4:0] mode bits that are used to determine the processor operating
mode.

Table 2-4 PSR mode bit values

M[4:0] Mode
Visible state registers

 Thumb ARM

b10000 User r0–r7, r8-r12a, SP, LR, PC, CPSR r0–r14, PC, CPSR

b10001 FIQ r0–r7, r8_fiq-r12_fiqa, SP_fiq, LR_fiq PC,
CPSR, SPSR_fiq

r0–r7, r8_fiq–r14_fiq, PC, CPSR,
SPSR_fiq

b10010 IRQ r0–r7, r8-r12a, SP_irq, LR_irq, PC, CPSR,
SPSR_irq

r0–r12, r13_irq, r14_irq, PC, CPSR,
SPSR_irq

b10011 Supervisor r0–r7, r8-r12a, SP_svc, LR_svc, PC, CPSR,
SPSR_svc

r0–r12, r13_svc, r14_svc, PC, CPSR,
SPSR_svc

b10111 Abort r0–r7, r8-r12a, SP_abt, LR_abt, PC, CPSR,
SPSR_abt

r0–r12, r13_abt, r14_abt, PC, CPSR,
SPSR_abt

b11011 Undefined r0–r7, r8-r12a, SP_und, LR_und, PC, CPSR,
SPSR_und

r0–r12, r13_und, r14_und, PC, CPSR,
SPSR_und

b11111 System r0–r7, r8-r12a, SP, LR, PC, CPSR r0–r14, PC, CPSR

a. Access to these registers is limited in Thumb state.
2-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
2.9.8 Modification of PSR bits by MSR instructions

In previous architecture versions, MSR instructions can modify the flags byte, bits
[31:24], of the CPSR in any mode, but the other three bytes are only modifiable in
privileged modes.

After the introduction of ARM architecture v6, however, each CPSR bit falls into one
of the following categories:

• Bits that are freely modifiable from any mode, either directly by MSR instructions
or by other instructions whose side-effects include writing the specific bit or
writing the entire CPSR.

Bits in Figure 2-7 on page 2-17 that are in this category are N, Z, C, V, Q,
GE[3:0], and E.

• Bits that must never be modified by an MSR instruction, and so must only be written
as a side-effect of another instruction. If an MSR instruction tries to modify these
bits, the results are architecturally Unpredictable. In the processor, these bits are
not affected.

Bits in Figure 2-7 on page 2-17 that are in this category are J and T.

• Bits that can only be modified from privileged modes, and that are completely
protected from modification by instructions while the processor is in User mode.
The only way that these bits can be modified while the processor is in User mode
is by entering a processor exception, as described in Exceptions on page 2-24.

Bits in Figure 2-7 on page 2-17 that are in this category are A, I, F, and M[4:0].

2.9.9 Reserved bits

The remaining bits in the PSRs are unused, but are reserved. When changing a PSR flag
or control bits, make sure that these reserved bits are not altered. You must ensure that
your program does not rely on reserved bits containing specific values because future
processors might use some or all of the reserved bits.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-23
Unrestricted Access Non-Confidential

Programmers Model
2.10 Exceptions

Exceptions occur whenever the normal flow of a program must be halted temporarily,
for example, to service an interrupt from a peripheral. Before attempting to handle an
exception, the MP11 CPU preserves the current processor state so that the original
program can resume when the handler routine has finished.

If two or more exceptions occur simultaneously, the exceptions are dealt with in the
fixed order given in Exception priorities on page 2-33.

This section describes the MPCore exception handling in:

• Exception entry and exit summary on page 2-25

• Entering an ARM exception on page 2-26

• Leaving an ARM exception on page 2-27.

Several enhancements are made in ARM architecture v6 to the exception model, mostly
to improve interrupt latency, as follows:

• New instructions are added to give a choice of stack to use for storing the
exception return state after exception entry, and to simplify changes of processor
mode and the disabling and enabling of interrupts.

• Support for an imprecise Data Abort that behaves as an interrupt rather than as an
abort, in that it occurs asynchronously relative to the instruction execution.
Support involves the masking of a pending imprecise Data Abort at times when
entry into Abort mode is deemed unrecoverable.

2.10.1 New instructions for exception handling

This section describes the instructions added to accelerate the handling of exceptions.
Full details of these instructions are given in the ARM Architecture Reference Manual.

Store Return State (SRS)

This instruction stores r14_<current_mode> and spsr_<current_mode> to sequential
addresses, using the banked version of r13 for a specified mode to supply the base
address (and to be written back to if base register write-back is specified). This enables
an exception handler to store its return state on a stack other than the one automatically
selected by its exception entry sequence.

The addressing mode used is a version of ARM addressing mode 4 (see the ARM
Architecture Reference Manual), modified to assume a {r14,SPSR} register list, rather
than using a list specified by a bit mask in the instruction. This enables the SRS
instruction to access stacks in a manner compatible with the normal use of STM
instructions for stack accesses.
2-24 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
Return From Exception (RFE)

This instruction loads the PC and CPSR from sequential addresses. This is used to
return from an exception that has had its return state saved using the SRS instruction (see
Store Return State (SRS) on page 2-24), and again uses a version of ARM addressing
mode 4, modified this time to assume a {PC, CPSR} register list.

Change Processor State (CPS)

This instruction provides new values for the CPSR interrupt masks, mode bits, or both,
and is designed to shorten and speed up the read/modify/write instruction sequence used
in ARMv5 to perform such tasks. Together with the SRS instruction, it enables an
exception handler to save its return information on the stack of another mode and then
switch to that other mode, without modifying the stack belonging to the original mode
or any registers other than the new mode stack pointer.

This instruction also streamlines interrupt mask handling and mode switches in other
code. In particular it enables short code sequences to be made atomic efficiently in a
uniprocessor system by disabling interrupts at their start and re-enabling interrupts at
their end. A similar Thumb instruction is also provided. However, the Thumb
instruction can only change the interrupt masks, not the processor mode as well, to
avoid using too much instruction set space.

2.10.2 Exception entry and exit summary

Table 2-5 summarizes the PC value preserved in the relevant r14 on exception entry, and
the recommended instruction for exiting the exception handler.

Table 2-5 Exception entry and exit

Exception
on entry

Return instruction
Previous state

Notes
ARM r14_x Thumb r14_x Java r14_x

SWI MOVS PC, R14_svc PC + 4 PC+2 - Where the PC is the address
of the SWI or Undefined
instruction. Not used in
Jazelle state.

UNDEF MOVS PC, R14_und PC + 4 PC+2 -

PABT SUBS PC, R14_abt, #4 PC + 4 PC+4 PC+4 Where the PC is the address
of instruction that had the
Prefetch Abort.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-25
Unrestricted Access Non-Confidential

Programmers Model
2.10.3 Entering an ARM exception

When handling an ARM exception the processor:

1. Preserves the address of the next instruction in the appropriate LR. When the
exception entry is from:

ARM and Jazelle states:
The processor writes the value of the PC into the LR, offset by a value
(current PC + 4 or PC + 8 depending on the exception) that causes the
program to resume from the correct place on return

Thumb state:
The processor writes the value of the PC into the LR, offset by a value
(current PC + 2, PC + 4 or PC + 8 depending on the exception) that
causes the program to resume from the correct place on return.

The exception handler does not have to determine the state when entering an
exception. For example, in the case of a SWI, MOVS PC, r14_svc always returns to
the next instruction regardless of whether the SWI was executed in ARM or
Thumb state.

2. Copies the CPSR into the appropriate SPSR.

3. Forces the CPSR mode bits to a value that depends on the exception.

4. Forces the PC to fetch the next instruction from the relevant exception vector.

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC+4 PC+4 Where the PC is the address
of the instruction that was
not executed because the
FIQ or IRQ took priority.

IRQ SUBS PC, R14_irq, #4 PC + 4 PC+4 PC+4

DABT SUBS PC, R14_abt, #8 PC + 8 PC+8 PC+8 Where the PC is the address
of the Load or Store
instruction that generated
the Data Abort.

RESET NA - - - The value saved in r14_svc
on reset is Unpredictable.

BKPT SUBS PC, R14_abt, #4 PC + 4 PC+4 PC+4 Software breakpoint.

Table 2-5 Exception entry and exit (continued)

Exception
on entry

Return instruction
Previous state

Notes
ARM r14_x Thumb r14_x Java r14_x
2-26 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
The processor can also set the interrupt disable flags to prevent otherwise unmanageable
nesting of exceptions.

Note
 Exceptions are always entered, handled, and exited in ARM state. When the processor
is in Thumb state or Jazelle state and an exception occurs, the switch to ARM state takes
place automatically when the exception vector address is loaded into the PC.

2.10.4 Leaving an ARM exception

When an exception has completed, the exception handler must move the LR, minus an
offset to the PC. Table 2-5 on page 2-25 shows the type of exception and the offsets
associated with it.

Typically the return instruction is an arithmetic or logical operation with the S bit set
and rd = r15, so the processor copies the SPSR back to the CPSR.

Note
 The action of restoring the CPSR from the SPSR automatically resets the T bit and J bit
to the values held immediately prior to the exception. The A, I, and F bits are also
automatically restored to the value they held immediately prior to the exception.

2.10.5 Reset

When the nCPURESET signal is driven LOW a reset occurs, and the processor
abandons the executing instruction.

When nCPURESET is driven HIGH again the processor:

1. Forces CPSR M[4:0] to b10011 (Supervisor mode), sets the A, I, and F bits in the
CPSR, and clears the CPSR T bit and J bit. The E bit is set based on the state of
the CFGEND pin. Other bits in the CPSR are indeterminate.

2. Forces the PC to fetch the next instruction from the reset vector address.

3. Reverts to ARM state, and resumes execution.

After reset, all register values except the PC and CPSR are indeterminate.

See Chapter 11 Clocking, Resets, and Power Management for more details of the reset
behavior for the processor.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-27
Unrestricted Access Non-Confidential

Programmers Model
2.10.6 Fast interrupt request

The Fast Interrupt Request (FIQ) exception supports fast interrupts. In ARM state, FIQ
mode has eight private registers to reduce, or even remove the requirement for register
saving (minimizing the overhead of context switching).

An FIQ is externally generated by taking the nFIQ signal input LOW. The nFIQ input
is registered internally to the processor. It is the output of this register that is used by the
processor control logic.

Irrespective of whether exception entry is from ARM state, Thumb state, or Jazelle
state, an FIQ handler returns from the interrupt by executing:

SUBS PC,R14_fiq,#4

You can disable FIQ exceptions within a privileged mode by setting the CPSR F flag.
When the F flag is clear, the processor checks for a LOW level on the output of the nFIQ
register at the end of each instruction.

FIQs and IRQs are disabled when an FIQ occurs. You can use nested interrupts but it is
up to you to save any corruptible registers and to re-enable FIQs and interrupts.

2.10.7 Interrupt request

The IRQ exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ
has a lower priority than FIQ, and is masked on entry to an FIQ sequence.

Irrespective of whether exception entry is from ARM state, Thumb state, or Jazelle
state, an IRQ handler returns from the interrupt by executing:

SUBS PC,R14_irq,#4

You can disable IRQ exceptions within a privileged mode by setting the CPSR I flag.
When the I flag is clear, the processor checks for a LOW level on the output of the nIRQ
register at the end of each instruction.

IRQs are disabled when an IRQ occurs. You can use nested interrupts but it is up to you
to save any corruptible registers and to re-enable IRQs.

2.10.8 Aborts

An abort can be caused by either:

• the MMU signaling an internal abort

• an External Abort raised from the AXI interfaces, by an AXI Slave or Decode
Error response.
2-28 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
There are two types of abort:

• Prefetch Abort

• Data Abort.

IRQs are disabled when an abort occurs.

Prefetch Abort

This is signaled with the instruction data when it enters the pipeline Decode stage.

When a Prefetch Abort occurs, the processor marks the prefetched instruction as
invalid, but does not take the exception until the instruction is to be executed. If the
instruction is not executed, for example because a branch occurs while it is in the
pipeline, the abort does not take place.

After dealing with the cause of the abort, the handler executes the following instruction
irrespective of the processor operating state:

SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR, and retries the aborted instruction.

Data Abort

Data Abort on the processor can be precise or imprecise. Precise Data Aborts are those
generated after performing an instruction side CP15 operation, and all those generated
by the MMU:

• alignment faults

• translation faults

• domain faults

• permission faults.

Data Aborts that occur because of watchpoints are imprecise in that the processor and
system state presented to the abort handler is the processor and system state at the
boundary of an instruction shortly after the instruction that caused the watchpoint (but
before any following load/store instruction). Because the state that is presented is
consistent with an instruction boundary, these aborts are restartable, even though they
are imprecise.

Errors that cause externally generated Data Aborts, signaled by AXI RRESP or
BRESP, might be precise or imprecise. Two separate Fault Status Registers encodings
indicate if the External Abort is precise or imprecise.

External Data Aborts are precise if:

• all aborts to loads or stores to Strongly Ordered memory are precise
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-29
Unrestricted Access Non-Confidential

Programmers Model
• all aborts to loads to the Program Counter or the CPSR are precise

• all aborts on the load part of an SWP are precise.

All other External Aborts are imprecise.

External aborts are supported on cacheable locations. The abort is transmitted to the
processor only if a word requested by the processor had an External Abort.

Precise Data Aborts

A precise Data Abort is signaled when the abort exception enables the processor and
system state presented to the abort handler to be consistent with the processor and
system state when the aborting instruction was executed. With precise Data Aborts, the
restarting of the processor after the cause of the abort has been rectified is
straightforward.

The processor implements the base restored Data Abort model, which differs from the
base updated Data Abort model implemented by the ARM7TDMI-S.

With the base restored Data Abort model, when a Data Abort exception occurs during
the execution of a memory access instruction, the base register is always restored by the
processor hardware to the value it contained before the instruction was executed. This
removes the requirement for the Data Abort handler to unwind any base register update,
which might have been specified by the aborted instruction. This simplifies the software
Data Abort handler. See the ARM Architecture Reference Manual for more details.

After dealing with the cause of the abort, the handler executes the following return
instruction irrespective of the processor operating state at the point of entry:

SUBS PC,R14_abt,#8

This restores both the PC and the CPSR, and retries the aborted instruction.

Imprecise Data Aborts

An imprecise Data Abort is signaled when the processor and system state presented to
the abort handler cannot be guaranteed to be consistent with the processor and system
state when the aborting instruction was issued.

2.10.9 Imprecise Data Abort mask in the CPSR/SPSR

An imprecise Data Abort caused, for example, by an external error on a write that has
been held in a Write Buffer, is asynchronous to the execution of the causing instruction
and can occur many cycles after the instruction that caused the memory access has
retired. For this reason, the imprecise Data Abort can occur at a time that the processor
is in Abort mode because of a precise Data Abort, or can have live state in Abort mode,
but be handling an interrupt.
2-30 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
To avoid the loss of the Abort mode state (r14 and SPSR_abt) in these cases, which
leads to the processor entering an unrecoverable state, the existence of a pending
imprecise Data Abort must be held by the system until a time when the Abort mode can
safely be entered.

A mask is added into the CPSR to indicate that an imprecise Data Abort can be
accepted. This bit is the A bit. The imprecise Data Abort causes a Data Abort to be taken
when imprecise Data Aborts are not masked. When imprecise Data Aborts are masked,
then the implementation is responsible for holding the presence of a pending imprecise
Data Abort until the mask is cleared and the abort is taken.

The A bit is set automatically on entry into Abort Mode, IRQ, and FIQ Modes, and on
Reset.

2.10.10 Software interrupt instruction

You can use the software interrupt (SWI) instruction to enter Supervisor mode, usually
to request a particular supervisor function. The SWI handler reads the opcode to extract
the SWI function number. A SWI handler returns by executing the following
instruction, irrespective of the processor operating state:

MOVS PC, R14_svc

This action restores the PC and CPSR, and returns to the instruction following the SWI.

IRQs are disabled when a software interrupt occurs.

2.10.11 Undefined instruction

When the processor encounters an instruction that neither it nor any coprocessor in the
system can handle, the processor takes the Undefined Instruction exception. Software
can use this mechanism to extend the ARM instruction set by emulating Undefined
coprocessor instructions.

After emulating the failed instruction, the trap handler executes the following
instruction, irrespective of the processor operating state:

MOVS PC,R14_und

This action restores the CPSR and returns to the next instruction after the Undefined
instruction.

IRQs are disabled when an Undefined Instruction exception occurs. For more details
about Undefined instructions, see the ARM Architecture Reference Manual.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-31
Unrestricted Access Non-Confidential

Programmers Model
2.10.12 Breakpoint instruction

A breakpoint, BKPT, instruction operates as though the instruction causes a Prefetch
Abort.

A breakpoint instruction does not cause the processor to take the Prefetch Abort
exception until the instruction reaches the Execute stage of the pipeline. If the
instruction is not executed, for example because a branch occurs while it is in the
pipeline, the breakpoint does not take place.

After dealing with the breakpoint, the handler executes the following instruction
irrespective of the processor operating state:

SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR, and retries the breakpointed instruction.

Note
 If the EmbeddedICE-RT logic is configured into halting debug-mode, a breakpoint
instruction causes the processor to enter debug state. See Halting debug-mode
debugging on page 12-4.

2.10.13 Exception vectors

Table 2-6 shows the CP15 c1 Control Register V bit settings for configuring the location
of the exception vector addresses.

Table 2-6 Configuration of exception vector address locations

Value of V bit
Exception vector
base location

0 0x00000000

1 0xFFFF0000
2-32 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Programmers Model
Table 2-7 shows the exception vector addresses and entry conditions for the different
exception types.

2.10.14 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines the
order that they are handled:

1. Reset, highest priority.

2. Precise Data Abort.

3. FIQ.

4. IRQ.

5. Imprecise Data Aborts.

6. Prefetch Abort.

7. BKPT, Undefined instruction, and SWI, lowest priority.

Some exceptions cannot occur together:

• The BKPT, Undefined instruction, and SWI exceptions are mutually exclusive. Each
corresponds to a particular, non-overlapping, decoding of the current instruction.

• When FIQs are enabled, and a precise Data Abort occurs at the same time as an
FIQ, the processor enters the Data Abort handler, and proceeds immediately to
the FIQ vector.

A normal return from the FIQ causes the Data Abort handler to resume execution.

Table 2-7 Exception vectors

Exception
Offset from
vector base

Mode on
entry

A bit on
entry

F bit on
entry

I bit on
entry

Reset 0x00 Supervisor Disabled Disabled Disabled

Undefined instruction 0x04 Undefined Unchanged Unchanged Disabled

Software interrupt 0x08 Supervisor Unchanged Unchanged Disabled

Prefetch Abort 0x0C Abort Disabled Unchanged Disabled

Data Abort 0x10 Abort Disabled Unchanged Disabled

Reserved 0x14 Reserved - - -

IRQ 0x18 IRQ Disabled Unchanged Disabled

FIQ 0x1C FIQ Disabled Disabled Disabled
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 2-33
Unrestricted Access Non-Confidential

Programmers Model
Precise Data Aborts must have higher priority than FIQs to ensure that the transfer
error does not escape detection. You must add the time for this exception entry to
the worst-case FIQ latency calculations in a system that uses aborts to support
virtual memory.

The FIQ handler must not access any memory that can generate a Data Abort,
because the initial Data Abort exception condition is lost if this happens.
2-34 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 3
Control Coprocessor CP15

This chapter describes the MPCore control coprocessor CP15 registers and how they are
accessed. It also provides information for programming the microprocessor. It contains
the following sections:

• About control coprocessor CP15 on page 3-2

• CP15 registers arranged by function on page 3-3

• Summary of control coprocessor CP15 registers and operations on page 3-6

• Register descriptions on page 3-11

• Summary of CP15 instructions on page 3-77.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-1
Unrestricted Access Non-Confidential

Control Coprocessor CP15
3.1 About control coprocessor CP15

The control coprocessor, CP15, implements a range of control functions and provides
status information for the MP11 CPU. The main functions of CP15 are:

• overall system control and configuration of the processor

• cache configuration and management

• Memory Management Unit (MMU) configuration and management

• system performance monitoring.

3.1.1 Accessing CP15 registers

You can access CP15 registers with MRC and MCR instructions. Figure 3-1 shows the
instruction bit pattern of MRC and MCR instructions.

Figure 3-1 CP15 MRC and MCR bit pattern

The assembler for these instructions is:

MRC{cond} P15,<Opcode_1>,<Rd>,<CRn>,<CRm>,<Opcode_2>
MCR{cond} P15,<Opcode_1>,<Rd>,<CRn>,<CRm>,<Opcode_2>

Instructions CDP, LDC, and STC, together with unprivileged MRC and MCR instructions to
privileged-only CP15 locations, cause the Undefined Instruction exception to be taken.
The CRn field of MRC and MCR instructions specifies the coprocessor register to access.
The CRm field and Opcode_2 fields specify a particular action when addressing
registers. The L bit distinguishes between an MRC (L=1) and an MCR (L=0).

Note
 Attempting to read from a nonreadable register, or to write to a nonwritable register
causes Unpredictable results.

The Opcode_1, Opcode_2, and CRm fields Should Be Zero in all instructions that
access CP15, except when the values specified are used to select required operations.
Using other values results in Unpredictable behavior.

In all cases, reading from or writing to any CP15 registers, including those fields
specified as Unpredictable (UNP), Should Be One (SBO), or Should Be Zero (SBZ),
does not cause any physical damage to the chip.

CRm

31 28 27 26 25 24 23 21 20 19 16 15 12 11 10 9 8 7 5 4 3 0

Cond 1 1 1 0 L CRn Rd 1 1 1 1 1

Opcode_1 Opcode_2
3-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
3.2 CP15 registers arranged by function

Table 3-1 shows the system functions of the CP15 control registers.

Table 3-1 CP15 register functions

Function Register Reference to description

Overall system
configuration and control

Control See c1, Control Register on page 3-28

Auxiliary Control See c1, Auxiliary Control Register on page 3-33

Coprocessor Access Control See c1, Coprocessor Access Control Register on page 3-35

ID Code See c0, Main ID Register on page 3-11

CPU ID See c0, CPU ID Register on page 3-14

Thread ID See c13, Thread ID registers on page 3-65

Processor Feature 0 See Processor Feature Register 0, ID_PFR0 on page 3-16

Processor Feature 1 See Processor Feature Register 1, ID_PFR1 on page 3-16

Debug Feature 0 See Debug Feature Register 0, ID_DFR0 on page 3-17

Memory Model 0 See Memory Model Features Register 0, ID_MMFR0 on
page 3-18

Memory Model 1 See Memory Model Feature Register 1 (ID_MMFR1) on
page 3-19

Memory Model 2 See Memory Model Feature Register 2 (ID_MMFR2) on
page 3-20

Memory Model 3 See Memory Model Feature Register 3 (ID_MMFR3) on
page 3-22

Instruction Set Attributes 0 See Instruction Set Attributes Register 0 (ID_ISAR0) on
page 3-23

Instruction Set Attributes 1 See Instruction Set Attributes Register 1 (ID_ISAR1) on
page 3-24

Instruction Set Attributes 2 See Instruction Set Attributes Register 2 (ID_ISAR2) on
page 3-25

Instruction Set Attributes 3 See Instruction Set Attributes Register 3 (ID_ISAR3) on
page 3-26

Instruction Set Attributes 4 See Instruction Set Attributes Register 4 (ID_ISAR4) on
page 3-28
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-3
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Cache and TLB operation
and control

Cache Type See c0, Cache Type Register on page 3-11

Cache operations See c7, Cache Operations Register on page 3-45

Data Cache Lockdown See c9, Data Cache Lockdown Register on page 3-56

Domain Access Control See c3, Domain Access Control Register on page 3-40

TLB Type See c0, TLB Type Register on page 3-13

TLB operations See c8, TLB Operations Register on page 3-53

TLB Lockdown See c10, TLB Lockdown Register on page 3-58

Branch Target Cache
Operations

See c7, Cache Operations Register on page 3-45

Access to main TLB
lockdown entries

TLB Lockdown Attribute See c15, TLB lockdown operations on page 3-72

TLB Lockdown Entry See c15, TLB lockdown operations on page 3-72

TLB Lockdown PA See c15, TLB lockdown operations on page 3-72

TLB Lockdown VA See c15, TLB lockdown operations on page 3-72

TLB Debug TLB Debug Control See c15, TLB Debug Control Register on page 3-70

Table 3-1 CP15 register functions (continued)

Function Register Reference to description
3-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Memory Management
Unit configuration and
control

Context ID See c13, Context ID Register on page 3-64

FCSE PID See c13, FCSE PID Register on page 3-62

Data Fault Address See c6, Fault Address Register on page 3-44

Data Fault Status See c5, Data Fault Status Register on page 3-41

Watchpoint Fault Address See c6, Watchpoint Fault Address Register on page 3-44

Instruction Fault Status See c5, Instruction Fault Status Register on page 3-43

Domain Access Control See c3, Domain Access Control Register on page 3-40

Translation Table Base
Control

See c2, Translation Table Base Control Register on
page 3-39

Translation Table Base 0 See c2, Translation Table Base Register 0 on page 3-36

Translation Table Base 1 See c2, Translation Table Base Register 1 on page 3-38

Memory Remap See c10, Memory Region Remap Registers on page 3-59

System performance
monitoring

Performance Monitor Control See c15, Performance Monitor Control Register (PMNC)
on page 3-66

Count 0 (PMN0) See c15, Count Register 0 (PMN0) and Count Register 1
(PMN1) on page 3-70

Count 1 (PMN1) See c15, Count Register 0 (PMN0) and Count Register 1
(PMN1) on page 3-70

Cycle Counter (CCNT) See c15, Cycle Counter Register (CCNT) on page 3-69

Table 3-1 CP15 register functions (continued)

Function Register Reference to description
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-5
Unrestricted Access Non-Confidential

Control Coprocessor CP15
3.3 Summary of control coprocessor CP15 registers and operations

Table 3-2 shows the registers and operations of CP15, arranged numerically.

Table 3-2 Summary of CP15 registers and operations

CRn Op1a CRm Op2a Register/operation name Typeb Reset value Page

c0 0 c0 0 Main ID RO 0x410FB024 page 3-11

1 Cache Type RO Implementation
-definedc

page 3-11

3 TLB Type RO 0x00000800 page 3-13

5 CPU ID RO Implementation
-definedc

page 3-14

c1 0 Processor Feature Register 0 RO 0x00000111 page 3-15

1 Processor Feature Register 1 RO 0x00000001 page 3-15

2 Debug Feature Register 0 RO 0x00000002 page 3-15

4 Memory Model Feature Register 0 RO 0x01100103 page 3-15

5 Memory Model Feature Register 1 RO 0x10020302 page 3-15

6 Memory Model Feature Register 2 RO 0x01222000 page 3-15

7 Memory Model Feature Register 3 RO 0x00000000 page 3-15

c2 0 ISA Feature Register 0 RO 0x00100011 page 3-22

1 ISA Feature Register 1 RO 0x12002111 page 3-22

2 ISA Feature Register 2 RO 0x11221011 page 3-22

3 ISA Feature Register 3 RO 0x01102131 page 3-22

4 ISA Feature Register 4 RO 0x00000141 page 3-22

c1 0 c0 0 Control R/W 0x00054078 page 3-28

1 Auxiliary Control R/W 0x0000000F page 3-33

2 Coprocessor Access Control R/W 0x00000000 page 3-35
3-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
c2 0 c0 0 Translation Table Base 0 R/W 0x00000000 page 3-36

1 Translation Table Base 1 R/W 0x00000000 page 3-38

2 Translation Table Base Control R/W 0x00000000 page 3-39

c3 0 c0 0 Domain Access Control R/W 0x00000000 page 3-40

c4 - - - Not used - - -

c5 0 c0 0 Data Fault Status R/W - page 3-41

1 Instruction Fault Status R/W - page 3-43

c6 0 c0 0 Data Fault Address R/W - page 3-44

1 Watchpoint Fault Address R/W - page 3-44

Table 3-2 Summary of CP15 registers and operations (continued)

CRn Op1a CRm Op2a Register/operation name Typeb Reset value Page
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-7
Unrestricted Access Non-Confidential

Control Coprocessor CP15
c7 0 c0 4 WFI WO - page 3-47

c4 0 PA Register RO 0x00000000 page 3-52

c5 0 Invalidate Entire Instruction Cache WO - page 3-45

1 Invalidate Instruction Cache (using
MVA)

WO - page 3-45

2 Invalidate Instruction Cache (using
Index)

WO - page 3-45

4 Flush Prefetch Buffer WO - page 3-45

6 Flush Entire Branch Target Cache WO - page 3-45

7 Flush Branch Target Cache Entry WO - page 3-45

c6 0 Invalidate Entire Data Cache WO - page 3-45

1 Invalidate Data Cache Line (using MVA) WO - page 3-45

2 Invalidate Data Cache Line (using Index) WO - page 3-45

c7 0 Invalidate both caches WO - page 3-45

c8 0 VA to PA privileged read WO - page 3-51

1 VA to PA privileged write WO - page 3-51

2 VA to PA user read WO - page 3-51

3 VA to PA user write WO - page 3-51

c10 0 Clean Entire Data Cache WO - page 3-45

1 Clean Data Cache Line (using MVA) WO - page 3-45

2 Clean Data Cache Line (using Index) WO - page 3-45

4 Data Synchronization Barrier WO - page 3-45

5 Data Memory Barrier WO - page 3-45

Table 3-2 Summary of CP15 registers and operations (continued)

CRn Op1a CRm Op2a Register/operation name Typeb Reset value Page
3-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
c7 0 c14 0 Clean and Invalidate Entire Data Cache WO - page 3-45

1 Clean and Invalidate Data Cache Line
(using MVA)

WO - page 3-45

2 Clean and Invalidate Data Cache Line
(using Index)

WO - page 3-45

c8 0 c5 0 Invalidate Instruction TLB WO - page 3-53

1 Invalidate Instruction TLB Single Entry WO - page 3-53

2 Invalidate Instruction TLB Entry on
ASID match

WO - page 3-53

3 Invalidate Instruction TLB Single Entry
on MVA only

WO - page 3-56

c6 0 Invalidate Data TLB WO - page 3-53

1 Invalidate Data TLB Single Entry WO - page 3-53

2 Invalidate Data TLB Entry on ASID
match

WO - page 3-53

3 Invalidate Data TLB Single Entry on
MVA only

WO - page 3-56

c7 0 Invalidate Unified TLB WO - page 3-53

1 Invalidate Unified TLB Single Entry WO - page 3-53

2 Invalidate Unified TLB Entry on ASID
match

WO - page 3-53

3 Invalidate Unified TLB Single Entry on
MVA only

WO - page 3-56

c9 0 c0 0 Data Cache Lockdown R/W 0xFFFFFFF0 page 3-56

c10 0 c0 0 TLB Lockdown R/W 0x00000000 page 3-58

c2 0 Primary Region Remap Register R/W 0x00098AA4 page 3-59

1 Normal Region Remap Register R/W 0x44E048E0 page 3-59

c11 - - - Not used - - -

Table 3-2 Summary of CP15 registers and operations (continued)

CRn Op1a CRm Op2a Register/operation name Typeb Reset value Page
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-9
Unrestricted Access Non-Confidential

Control Coprocessor CP15
c12 - - - Not used - - -

c13 0 c0 0 FCSE PID R/W 0x00000000 page 3-62

1 Context ID R/W 0x00000000 page 3-64

2 Thread ID Register User and Privileged
R/W accessible

R/W 0x00000000 page 3-65

3 Thread ID Register User read-only and
Privileged R/W accessible

R/W 0x00000000 page 3-65

4 Thread ID Register Privileged R/W
accessible only

R/W 0x00000000 page 3-65

c14 - - - Not used - - -

c15 0 c12 0 Performance Monitor Control R/W 0x00000000 page 3-66

1 Cycle Counter (CCNT) R/W Unpredictable page 3-69

2 Count 0 (PMN0) R/W Unpredictable page 3-70

3 Count 1 (PMN1) R/W Unpredictable page 3-70

5 c4 2 Read Main TLB Lockdown Entry WO - page 3-72

4 Write Main TLB Lockdown Entry WO - page 3-72

c5 2 Main TLB Lockdown VA R/W 0x00000000 page 3-72

c6 2 Main TLB Lockdown PA R/W 0x00000000 page 3-72

c7 2 Main TLB Lockdown Attribute R/W 0x00000000 page 3-72

7 c1 0 TLB Debug Control Register R/W 0x00000000 page 3-71

a. Op1 = Opcode_1, Op2 = Opcode_2.
b. Bold text denotes that the register can be accessed in User mode.
c. The cache type reset value is determined by the size of the caches implemented.

Table 3-2 Summary of CP15 registers and operations (continued)

CRn Op1a CRm Op2a Register/operation name Typeb Reset value Page
3-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
3.4 Register descriptions

This section contains descriptions of all the CP15 registers arranged in numerical order,
as shown in Table 3-2 on page 3-6.

3.4.1 c0, Main ID Register

The Main ID Register returns the device ID code that contains information about the
processor. Processor ID information is defined across the Main ID Register and some
Feature Version registers.

The Main ID Register is a read-only register that can be accessed with the following
CP15 instruction:

MRC p15,0,<Rd>,c0,c0,0; reads Main ID register

Figure 3-2 shows the format of the Main ID Register. This is a read-only register that
returns a 32-bit device ID code.

Figure 3-2 Main ID Register format

Table 3-3 shows the bit assignment of the Main ID Register.

3.4.2 c0, Cache Type Register

The Cache Type Register provides information about the size and architecture of the
cache for the operating system. This enables the operating system to establish how to
clean the cache and how to lock it down.

VariantImplementor

31 23 20 19 16 15 4 3 0

Architecture Part number Revision

24

Table 3-3 Main ID Register bit functions

Bits Value Function

[31:24] 0x41 Implementor

[23:20] 0x0 Variant number

[19:16] 0xF Architectural format description

[15:4] 0xB02 Part number

[3:0] 0x4 Revision number
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-11
Unrestricted Access Non-Confidential

Control Coprocessor CP15
The Cache Type Register is:

• in CP15 c0

• a 32-bit read-only register

• accessible in privileged modes only.

You can access the Cache Type Register by reading CP15 c0 with the Opcode_2 field
set to 1:

MRC p15,0,<Rd>,c0,c0,1; returns cache details

Figure 3-3 shows the format of the Cache Type Register.

Figure 3-3 Cache Type Register format

Table 3-4 shows the bit assignment of the Cache Type Register.

Len0

31 30 29 28 25 24 23 12 11 0

0 0 Ctype S P 0 Size Assoc M Len P 0 Size Assoc M

Dsize Isize

Table 3-4 Cache Type Register bit functions

Bits Field Function

[31:29] - SBZ/RAZ

[28:25] Ctype For MP11 CPUs, Ctype = b1110

MP11 CPUs support:

• write back cache

• Format C cache lockdown

• Register 7 cache cleaning operations.
3-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
3.4.3 c0, TLB Type Register

The TLB Type Register returns the number of lockable entries for the TLB.

The TLB has 64 entries organized as a unified 2-way set associative TLB. In addition,
it has eight lockable entries, as specified by the read-only TLB Type Register.

The TLB Type Register is:

• in CP15 c0

• a 32-bit read-only register

• accessible in privileged modes only.

You can access the TLB Type Register by reading CP15 c0 with the Opcode_2 field set
to 3. For example:

[24] S Bit Specifies if the cache is a unified cache (S = 0). For MP11 CPUs, S = 1.

[23:12] DSize Specifies the size, line length and associativity of the data cache:

[23] = b0

[22:21] = b00.

[20:18] = size

b101 = 16KB

b110 = 32KB

b111 = 64KB

[17:15] = b010 (4-way associative)

[14] = b0

[13:12] = b10 (8 words per cache line).

[11:0] ISize Specifies the size, line length and associativity of the instruction cache:

[11] = b0 for 16KB

(Set to b1 for 32KB and 64KB instruction caches)

[10:9] = b00

[8:6] = size

b101 = 16KB

b110 = 32KB

b111 = 64KB

[5:3] = b010 (4-way associative)

[2] = b0

[1:0] = b10 (8 words per cache line).

Table 3-4 Cache Type Register bit functions (continued)

Bits Field Function
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-13
Unrestricted Access Non-Confidential

Control Coprocessor CP15
MRC p15,0,<Rd>,c0,c0,3; returns TLB details

Figure 3-4 shows the format of the TLB Type Register.

Figure 3-4 TLB Type Register format

Table 3-5 shows the bit assignment of the TLB Type Register.

3.4.4 c0, CPU ID Register

The CPU ID Register identifies:

• the accessed CPU within an MPCore processor

• the MPCore processor in a multi-MP cluster system.

The CPU ID Register is:

• in CP15 c0

• a 32-bit read-only register

• accessible in privileged modes only.

You can access the CPU ID Register by reading CP15 c0 with the following CP15
instruction:

MRC p15,0,<Rd>,c0,c0,5; returns CPU ID register

Figure 3-5 on page 3-15 shows the format of the CPU ID Register.

U

31 24 23 16 15 8 0

SBZ/UNP ILSize DLSize SBZ/UNP

7 1

Table 3-5 TLB Type Register bit functions

Bits Field Function

[31:24] SBZ/UNP Reserved.

[23:16] ILsize Specifies the number of instruction TLB lockable entries. For MP11 CPUs this is 0.

[15:8] DLsize Specifies the number of unified or data TLB lockable entries. For MP11 CPUs this is 8.

[7:1] SBZ/UNP Reserved.

[0] U Specifies if the TLB is unified (0), or if there are separate instruction and data TLBs (1). For
MP11 CPUs this is 0.
3-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Figure 3-5 CPU ID Register format

The Cluster ID field value is set by the CLUSTERID configuration pins.

The CPU ID field value is different for each MP11 CPU in the processor. Depending on
the number of configured MP11 CPUs, the MP11 CPU IDs are:

• for one MP11 CPU, the CPU ID is 0x0

• for two MP11 CPUs, the CPU IDs are 0x0 and 0x1

• for three MP11 CPUs, the CPU IDs are 0x0, 0x1, and 0x2

• for four MP11 CPUs, the CPU IDs are 0x0, 0x1, 0x2, and 0x3.

3.4.5 c0, Feature registers

This section describes feature registers, they are:

• Processor feature registers

• Debug feature register

• Memory model registers.

You can access the Feature registers by reading CP15 c0 with the following CP15
instruction:

MRC p15,0,<Rd>,c0,c1,{0-7} ; reads feature version registers

Depending on the Opcode_2 value, the accessed register is:

• Opcode_2 = 0: ID_PFR0, Processor Feature Register 0

• Opcode_2 = 1: ID_PFR1, Processor Feature Register 1

• Opcode_2 = 2: ID_DFR0, Debug Feature Register 0

• Opcode_2 = 3: Reserved

• Opcode_2 = 4: IDMMFR0, Memory Model Feature Register 0

• Opcode_2 = 5: IDMMFR0, Memory Model Feature Register 1

• Opcode_2 = 6: IDMMFR0, Memory Model Feature Register 2

• Opcode_2 = 7: IDMMFR0, Memory Model Feature Register 3.

The reserved value, Opcode_2 = 3, reads as zero.

CPU ID

31 12 11 8 7 4 3 0

SBZ Cluster ID SBZ
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-15
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Processor Feature Register 0, ID_PFR0

The purpose of the Processor Feature Register 0 is to provide information about the
execution state support and programmers model for the processor.

Processor Feature Register 0 is:

• in CP15 c0

• a 32-bit read-only register

• accessible in privileged modes only.

Figure 3-6 shows the format of the ID_PFR0 Register.

Figure 3-6 ID_PFR0 format

Table 3-6 shows the bit assignment of the ID_PFR0 Register.

Processor Feature Register 1, ID_PFR1

The Processor Feature Register 1 provides information about the execution state
support and programmers model for the processor.

Processor Feature Register 1 is:

• in CP15 c0

• a 32-bit read-only register

• accessible in privileged modes only.

Figure 3-7 on page 3-17 shows the format of the ID_PFR1 Register.

State 0

31 16 15 12 11 8 7 4 3 0

Reserved State 3 State 2 State 1

Table 3-6 ID_PFRO bit functions

Bits Field Function

[31:16] Reserved RAZ

[15:12] State 3 (J == 1, T == 1) 0x0 (Not supported)

[11:8] State 2 (J == 1, T == 0) 0x1 (Java extension interface supported)

[7:4] State 1 (J == 0, T == 1) 0x1 (Thumb-1 encoding with all Thumb-1 basic instructions supported)

[3:0] State 0 (J == 0, T == 0) 0x1 (32-bit ARM instruction Set supported)
3-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Figure 3-7 ID_PFR1 format

Table 3-7 shows the bit assignment of the ID_PFR1 Register.

Debug Feature Register 0, ID_DFR0

The Debug Feature Register 0 provides information about the debug system for the
processor.

Debug Feature Register 0 is:

• in CP15 c0

• a 32-bit read-only register

• accessible in privileged modes only.

Figure 3-8 shows the format of the ID_DFR0 Register.

Figure 3-8 ID_DFR0 format

31 8 7 4 3 0

Reserved Security
extension

Programmer’s model

Table 3-7 ID_PFR1 bit functions

Bits Field Function

[31:8] Reserved RAZ

[7:4] Security extension 0x0 (not supported)

[3:0] Programmer's model 0x1 (standard - ARMv4 - programmer's model

31 8 7 4 3 0

Reserved

Secure debug model
Applications processor

debug model
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-17
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Table 3-8 shows the bit assignment of the ID_DFR0 Register.

Memory Model Features Register 0, ID_MMFR0

The Memory Model Feature Register 0 provides information about the memory model,
memory management, cache support, and TLB operations of the processor.

The Memory Model Feature Register 0 is:

• in CP15 c0

• a 32-bit read-only register

• accessible in privileged modes only.

Figure 3-9 shows the format of the Memory Model Feature Register 0.

Figure 3-9 Memory Model Feature Register 0 format

Table 3-9 shows the bit assignment of the ID_MMFR0 Register.

Table 3-8 Debug Feature Register 0 bit functions

Bits Field Function

[31:8] Reserved RAZ

[7:4] Secure debug model 0x0 (not supported)

[3:0] Applications processor debug model 0x2 (v6 debug model - CP14 based)

VMSA

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Reserved FCSE TCM PMSA

Auxiliary Control Register
Cache coherence

support – DMA agent
Cache coherence

support – CPU agent

Table 3-9 Memory Model Feature Register 0 bit functions

Bits Field Function

[31:28] Reserved RAZ

[27:24] FCSE 0x1 (FCSE supported)

[23:20] Auxiliary Control Register 0x1 (ARMv6)
3-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Memory Model Feature Register 1 (ID_MMFR1)

The Memory Model Feature Register 1 provides information about the memory model,
memory management, cache support, and TLB operations of the processor.

The Memory Model Feature Register 1 is:

• in CP15 c0

• a 32-bit read-only register

• accessible in privileged modes only.

Figure 3-10 shows the format of the Memory Model Feature Register 1.

Figure 3-10 Memory Model Feature Register 1 format

[19:16] TCM and associated DMA support 0x0 (not supported)

[15:12] Cache coherence support - DMA agent, shared memory 0x0 (no shared supported)

[11:8] Cache coherence support - CPU agent, shared memory 0x1 (L1 cache shared support)

[7:4] PMSA 0x0 (not supported)

[3:0] VMSA 0x3 (VMSAv6 + Advanced OS Features)

Table 3-9 Memory Model Feature Register 0 bit functions (continued)

Bits Field Function

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Branch target buffer

L1 Harvard cache line
maintenance operation

by VA

L1 unified cache line maintenance
operation by VA

L1 Harvard cache line maintenance operation by
Set/Way

L1 unified cache line maintenance operation by Set/Way

L1 Harvard cache maintenance operations

L1 unified cache maintenance operations

L1 Harvard or unified test and clean operation on data cache
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-19
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Table 3-10 shows the bit assignment of the ID_MMFR1 Register.

Memory Model Feature Register 2 (ID_MMFR2)

The Memory Model Feature Register 2 provides information about the memory model,
memory management, cache support, and TLB operations of the processor.

The Memory Model Feature Register 2 is:

• in CP15 c0

• a 32-bit read-only register

• accessible in privileged modes only.

Figure 3-11 on page 3-21 shows the format of the Memory Model Feature Register 2.

Table 3-10 ID_MMFR1 bit functions

Bits Field Function

[31:28] Branch target buffer 0x1 (requires flushing on VA change)

[27:24] L1 Harvard or unified test and
clean operation on data cache

0x0 (not supported)

[23:20] L1 unified cache maintenance
operations

0x0 (not supported)

[19:16] L1 Harvard cache maintenance
operations

0x2 (Invalidation instruction cache, data
cache and both)

[15:12] L1 unified cache line
maintenance operation by
Set/Way

0x0 (not supported)

[11:8] L1 Harvard cache line
maintenance operation by
Set/Way

0x3 (Clean data cache line, Clean and
Invalidate data cache line, Invalidate data
cache line, Invalidate instruction cache
line)

[7:4] L1 unified cache line
maintenance operation by VA

0x0 (not supported)

[3:0] L1 Harvard cache line
maintenance operation by VA

0x2 (Clean data cache line, Invalidate
data cache line, Invalidate instruction
cache line, Clean and Invalidate data
cache line, Invalidate BTAC line)
3-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Figure 3-11 Memory Model Feature Register 2 format

Table 3-11 shows the bit assignment of the ID_MMFR2 Register.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Reserved

L1 Harvard foreground
prefetch cache range

operation

L1 Harvard background prefetch
cache range operation

L1 Harvard cache maintenance range operation

Harvard TLB maintenance operation

Unified TLB maintenance operation

Memory barrier features

Wait for interrupt stalling

Table 3-11 ID_MMFR2 bit functions

Bits Field Function

[31:28] Reserved RAZ

[27:24] Wait for interrupt stalling 0x1 (wait for interrupt supported)

[23:20] Memory barrier features 0x2 (DataWriteBarrier, PrefetchFlush,
DataMemoryBarrier)

[19:16] Unified TLB maintenance operation 0x2 (Invalidate all entries, Invalidate TLB entry by MVA,
Invalidate TLB entries by ASID match)

[15:12] Harvard TLB maintenance operation 0x2 (Invalidate all entries, Invalidate TLB entry by MVA,
Invalidate TLB entries by ASID match)

0x2 (supported)

[11:8] L1 Harvard cache maintenance range operation 0x0 (not supported)

[7:4] L1 Harvard background prefetch cache range
operations

0x0 (not supported)

[3:0] L1 Harvard foreground prefetch cache range
operation

0x0 (not supported)
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-21
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Memory Model Feature Register 3 (ID_MMFR3)

The Memory Model Feature Register 3 provides information about the memory model,
memory management, cache support, and TLB operations of the processor.

The Memory Model Feature Register 3 is:

• in CP15 c0

• a 32-bit read-only register

• accessible in privileged modes only.

Figure 3-12 shows the format of the Memory Model Feature Register 3.

Figure 3-12 Memory Model Feature Register 3 format

Table 3-12 shows the bit assignment of the ID_MMFR3 Register.

3.4.6 c0, Instruction Set Attributes Registers

The Instruction Set Attributes Registers are:

• Instruction Set Attributes Register 0 (ID_ISAR0) on page 3-23

• Instruction Set Attributes Register 1 (ID_ISAR1) on page 3-24

• Instruction Set Attributes Register 2 (ID_ISAR2) on page 3-25

31 16 15 12 11 8 7 4 3 0

Reserved

Unified L2 cache maintenance operations

Unified L2 cache line maintenance operation with Set/Way

Unified L2 cache line maintenance operation with VA

Unified L2 cache line maintenance operation with PA

Table 3-12 ID_MMFR3 bit functions

Bits Field Function

[31:16] Reserved RAZ

[15:12] Unified L2 cache (all) maintenance operations 0x0 (not supported)

[11:8] Unified L2 cache line maintenance operation with Set/Way 0x0 (not supported)

[7:4] Unified L2 cache line maintenance operation with VA 0x0 (not supported)

[3:0] Unified L2 cache line maintenance operation with PA 0x0 (not supported)
3-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
• Instruction Set Attributes Register 3 (ID_ISAR3) on page 3-26

• Instruction Set Attributes Register 4 (ID_ISAR4) on page 3-28.

Instruction Set Attributes registers are read-only registers and are accessed with the
following CP15 instructions:

MRC p15,0,<Rd>,c0,c2,{0-7} ; reads feature version registers

Depending on the Opcode_2 value, the accessed register is:

• CRm=2

— Opcode_2 == 0: ID_ISAR0, ISA Feature Register 0

— Opcode_2 == 1: ID_ISAR1, ISA Feature Register 1

— Opcode_2 == 2: ID_ISAR2, ISA Feature Register 2

— Opcode_2 == 3: ID_ISAR3, ISA Feature Register 3

— Opcode_2 == 4: ID_ISAR4, ISA Feature Register 4

— Opcode_2 == 5: reserved

— Opcode_2 == 6: reserved

— Opcode_2 == 7: reserved.

Reserved Opcode_2 combination registers are all read-as-zero.

Instruction Set Attributes Register 0 (ID_ISAR0)

The Instruction Set Attributes Register 0 provides information about the instruction set
that the processor supports beyond the basic set.

The Instruction Set Attributes Register 0 is:

• in CP15 c0

• a 32-bit read-only register

• accessible in privileged modes only.

Figure 3-13 on page 3-24 shows the format of the Instruction Set Attributes Register 0.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-23
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Figure 3-13 Instruction Set Attributes Register 0 format

Table 3-13 shows the bit assignment of the ID_ISAR0 Register.

Instruction Set Attributes Register 1 (ID_ISAR1)

The Instruction Set Attributes Register 1 provides information about the instruction set
that the processor supports beyond the basic set.

The Instruction Set Attributes Register 1 is:

• in CP15 c0

• a 32-bit read-only register

• accessible in privileged modes only.

Figure 3-14 on page 3-25 shows the format of the Instruction Set Attributes Register 1.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Reserved

Divide instructions
Debug instructions
Coprocessor instructions
CmpBranch instructions
Bitfield instructions
Bitcount instructions
Atomic instructions

Table 3-13 Instruction Set Attributes Register 0 bit functions

Bits Field Function

[31:28] Reserved RAZ

[27:24] Divide instructions 0x0 (not supported)

[23:20] Debug instructions 0x1 (BKPT)

[19:16] Coprocessor instructions 0x0 (not supported - other than separately attributed architectures)

[15:12] CmpBranch instructions 0x0 (not supported)

[11:8] Bitfield instructions 0x0 (not supported)

[7:4] Bitcount instructions 0x1 (CLZ)

[3:0] Atomic instructions 0x1 (SWP, SWPB)
3-24 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Figure 3-14 Instruction Set Attributes Register 1 format

Table 3-14 shows the bit assignment of the ID_SAR1 Register.

Instruction Set Attributes Register 2 (ID_ISAR2)

The Instruction Set Attributes Register 2 provides information about the instruction set
that the processor supports beyond the basic set.

The Instruction Set Attributes Register 2 is:

• in CP15 c0

• a 32-bit read-only register

• accessible in privileged modes only.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Java bytecodes
Interwork instructions
Immediate instructions
IfThen instructions
Extend instructions
Exception2 instructions
Exception1 instructions
Endian instructions

Table 3-14 Instruction Set Attributes Register 1 bit functions

Bits Field Function

[31:28] Java bytecodes 0x1 (BXJ and J bit in PSRs)

[27:24] Interwork instructions 0x2 (BX, BLX, T bit in PSRs and PC loads have BX-like behavior)

[23:20] Immediate instructions 0x0 (no special immediate-generating instructions)

[19:16] IfThen instructions 0x0 (not supported)

[15:12] Extend instructions 0x2 (all supported)

[11:8] Exception2 instructions 0x1 (SRS, RFE, CPS)

[7:4] Exception1 instructions 0x1 (LDM(2), LDM(3), STM(2))

[3:0] Endian instructions 0x1 (SETEND)
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-25
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Figure 3-15 shows the format of the Instruction Set Attributes Register 2.

Figure 3-15 Instruction Set Attributes Register 2 format

Table 3-15 shows the bit assignment of the IDSAR2 Register.

Instruction Set Attributes Register 3 (ID_ISAR3)

The Instruction Set Attributes Register 3 provides information about the instruction set
that the processor supports beyond the basic set.

The Instruction Set Attributes Register 3 is:

• in CP15 c0

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Reversal instructions
PSR instructions
Multiply instructions, advanced, unsigned
Multiply instructions, advanced, signed
Multiply instructions
Multi-access interruptible instructions
Memory hint instructions

Load store instructions

Table 3-15 Instruction Set Attributes Register 2 bit functions

Bits Field Function

[31:28] Reversal instructions 0x1 (REV, REV16, REVSH)

[27:24] PSR instructions 0x1 (MRS, MSR and exception return data-processing instructions

[23:20] Multiply instructions (advanced, unsigned) 0x2 (UMULL, UMLAL, UMAAL)

[19:16] Multiply instructions (advanced, signed) 0x2 (SMULL, SMAL, SMLABB, SMLABT, SMLALBB, SMLALBT, SMLALTB,
SMLALTT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMULBB, SMULBT, SMULTB,
SMULTT, SMULWB, SMULWT, and Q flag in PSRs)

[15:12] Multiply instructions 0x1 (MUL, MLA)

[11:8] Multi-access interruptible instructions 0x0 (non-interruptible)

[7:4] Memory hint instructions 0x1 (PLD)

[3:0] Load store instructions 0x1 (adds LDRD/STRD)
3-26 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
• a 32-bit read-only registers

• accessible in privileged modes only.

Figure 3-16 shows the format of the Instruction Set Attributes Register 3.

Figure 3-16 Instruction Set Attributes Register 3 format

Table 3-16 shows the bit assignment of the ID_SAR3 Register.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Thumb-2 executable environment instructions
TrueNOP instructions
ThumbCopy instructions
TableBranch instructions
SyncPrim instructions
SWI instructions

SIMD instructions
Saturate instructions

Table 3-16 Instruction Set Attributes Register 3 bit functions

Bits Field Function

[31:28] Thumb-2 executable environment instructions 0x0 (not supported)

[27:24] TrueNOP instructions 0x1 (NOP32)

[23:20] ThumbCopy instructions 0x1 (Thumb MOV(3) low reg -> low reg and CPY alias)

[19:16] TableBranch instructions 0x0 (not supported)

[15:12] SyncPrim instructions 0x2 (LDREX, STREX, LDRBEX, STRBEX, LDRHEX, STRHEX, LDRDEX,
STRDEX, CLREX)

[11:8] SWI instructions 0x1 (supported)

[7:4] SIMD instructions 0x3 (all supported)

[3:0] Saturate instructions 0x1 (QADD, QDADD, QDSUB, QSUB, and Q flag in PSRs)
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-27
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Instruction Set Attributes Register 4 (ID_ISAR4)

The Instruction Set Attributes Register 4 provides information about the instruction set
that the processor supports beyond the basic set.

The Instruction Set Attributes Register 4 is:

• in CP15 c0

• a 32-bit read-only register

• accessible in privileged modes only.

Figure 3-17 shows the format of the Instruction Set Attributes Register 4.

Figure 3-17 Instruction Set Attributes Register 4 format

Table 3-17 shows the bit assignment of the ISAR4 Register.

3.4.7 c1, Control Register

The Control Register provides control and configuration of:

• memory alignment, endianness, protection, and fault behavior

• MMU and cache enables

• interrupts

• the location for exception vectors

31 16 15 12 11 8 7 4 3 0

Reserved

SMI instructions
Writeback instructions
With Shift instructions
Unprivileged instructions

Table 3-17 Instruction Set Attributes Register 4 bit functions

Bits Field Function

[31:16] Reserved RAZ

[15:12] SMI instructions 0x0 (not supported)

[11:8] Writeback instructions 0x1 (all currently-defined writeback addressing modes supported)

[7:4] With Shift instructions 0x4 (all shift options supported)

[3:0] Unprivileged instructions 0x1 (LDRBT, LDRT, STRBT, STRT)
3-28 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
• program flow prediction.

The Control Register is:

• in CP15 c1

• a 32 bit register,

• accessible in privileged modes only.

You can use the Control Register to enable and disable system configuration options.
You can access the Control Register by reading or writing CP15 c1 with the CRm and
Opcode_2 fields set to 0:

MRC p15,0,<Rd>,c1,c0,0; Read Control Register configuration data
MCR p15,0,<Rd>,c1,c0,0; Write Control Register configuration data

It is recommended that you access this register using a read-modify-write sequence.

All defined control bits are set to zero on Reset except:

• The V bit. At reset, this bit is set to 0 if the VINITHI signal is LOW, or 1 if the
VINITHI signal is HIGH.

• The U and EE bits in the CP15 Control Register and the E Bit in the CPSR/SPSR.
The reset values of these bits depend on the system configuration pins,
CFGEND. Table 3-18 shows these reset values.

Table 3-18 CFGEND, EE, U, and E bit values

CFGEND [1:0] CP15 Control Register CPSR/SPSR

EE bit U bit E bit

00 0 0 0

01 Reserved - - -

10 0 1 0

11 1 1 1
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-29
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Table 3-19 shows endianness and alignment control options.

Figure 3-18 shows the format of the Control Register.

Figure 3-18 Control Register format

Table 3-20 shows the bit assignment of the Control Register.

Table 3-19 Endianness and alignment control options

U A E
Instruction
endianness

Data
endianness

Unaligned
behavior

Description

0 0 0 LE LE Rotated LDR Legacy LE

0 0 1 - - - Reserved

0 1 0 LE LE Data Abort Modulo 8 LDRD/STRD doubleword
alignment checking

0 1 1 LE BE-8 Data Abort Modulo 8 LDRD/STRD doubleword
alignment checking

1 0 0 LE LE Unaligned Unaligned access permitted

1 0 1 LE BE-8 Unaligned Unaligned access permitted

1 1 0 LE LE Data Abort Modulo 4 alignment checking

1 1 1 LE BE-8 Data Abort Modulo 4 alignment checking

M

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 11 10 9 8 7 6 3 2 1 0

U V I Z R S C A

Reserved

Reserved

Reserved
Reserved
L4

XP
Reserved
EE
Reserved
NMFI
TEX Remap
Force AP
Reserved

Table 3-20 Control Register bit functions

Bits Field Function

[31:30] - Reserved. SBZ/RAZ.
3-30 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
[29] Force AP This bit controls the Force AP functionality in the MMU that generates Access Bit faults, see
Access permissions on page 5-12 on page 5-12:

0 = Force AP disabled, reset value

1 = Force AP enabled.

[28] TEX
Remap

This bit controls the TEX remap functionality in the MMU, see Memory region attributes on
page 5-16:

0 = TEX remap disabled. Normal ARMv6 behavior, reset value.

1 = TEX remap enabled. TEX[2:1] become page table bits for OS.

[27] NMFI NMFI bit:

0 = normal FIQ behavior

1 = FIQs behave as NMFIs.

[26] - Reserved. SBZ/RAZ.

[25] EE This bit determines the setting of the CPSR E bit on taking an exception:

0 = CPSR E bit is set to 0 on taking an exception

1 = CPSR E bit is set to 1 on taking an exception.

[24] - Reserved. SBZ/RAZ.

[23] XP Configure extended page table configuration. This bit configures the hardware page translation
mechanism:

0 = subpage AP bits enabled

1 = subpage AP bits disabled.

[22] U This bit enables unaligned data access operation, including support for mixed little-endian and
big-endian data.a

[21:16] - Writing to these bits has no effect. Read as 6'b000101.

[15] L4 Configure if load instructions to PC set T bit:

0 = loads to PC set the T bit

1 = loads to PC do not set the T bit (ARMv4 behavior).

For more details see the ARM Architecture Reference Manual.

[14] - Reserved. SBO/RAO.

[13] V Location of exception vectors:

0 = normal exception vectors selected, address range = 0x00000000-0x0000001C

1 = high exception vectors selected, address range = 0xFFFF0000-0xFFFF001C.

Table 3-20 Control Register bit functions (continued)

Bits Field Function
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-31
Unrestricted Access Non-Confidential

Control Coprocessor CP15
[12] I Level one instruction cache enable/disable:

0 = instruction cache disabled

1 = instruction cache enabled.

[11] Z Program flow prediction:

0 = program flow prediction disabled

1 = program flow prediction enabled.

Program flow prediction includes static and dynamic branch prediction and the return stack.
This bit enables all three forms of program flow prediction. You can enable or disable each
form individually by setting bits in the Auxiliary Control Register.

See c1, Auxiliary Control Register on page 3-33.

[10] - Reserved. SBZ.

[9] R ROM protection. (Deprecated).

[8] S System protection. (Deprecated).

[7] - Reserved. SBZ.

[6:3] - Reserved. SBO.

[2] C Level one data cache enable/disable:

0 = data cache disabled

1 = data cache enabled.

[1] A Strict data address alignment fault enable/disable:

0 = strict alignment fault checking disabled

1 = strict alignment fault checking enabled.

The A bit setting takes priority over the U bit. The Data Abort trap is taken if strict alignment
is enabled and the data access is not aligned to the width of the accessed data item.

[0] M MMU enable/disable:

0 = MMU disabled

1 = MMU enabled.

Take care with the address mapping of the code sequence used to enable the MMU, see
Enabling the MMU on page 5-9. See Disabling the MMU on page 5-9 for restrictions and
effects of having caches enabled with the MMU disabled.

a. This bit is affected by the setting of the A bit in this register.

Table 3-20 Control Register bit functions (continued)

Bits Field Function
3-32 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
3.4.8 c1, Auxiliary Control Register

The Auxiliary Control Register controls:

• program flow

• coherency mode

• cache exclusive behavior.

The Auxiliary Control Register is:

• in CP15 c1

• a 32-bit read-only register

• accessible in privileged modes only.

You can use the Auxiliary Control Register to enable and disable program flow
prediction operations. It is selected by reading or writing CP15 c1 with the Opcode_2
field set to 1:

MRC p15,0,<Rd>,c1,c0,1; Read Auxiliary Control Register
MCR p15,0,<Rd>,c1,c0,1; Write Auxiliary Control Register

Figure 3-19 shows the format of the Auxiliary Control Register.

Figure 3-19 Auxiliary Control Register format

Table 3-21 shows the bit assignment of the Auxiliary Control Register.

31 6 5 4 3 2 1 0

SBZ/UNP F

7

RS

SMP/nAMP mode
EXCL

SB
DB

L1 parity checking

Table 3-21 Auxiliary Control Register bit functions

Bits Field Function

[31:7] - Reserved. These bits must be updated using a read-modify-write technique to ensure that
currently unallocated bits are not unnecessarily modified.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-33
Unrestricted Access Non-Confidential

Control Coprocessor CP15
[6] L1 parity
checking

L1 parity checking enable bit:

0 = disabled, no parity errors are reported

1 = enabled, parity errors are reported through corresponding parity error output signals.

Note
 Before enabling L1 parity checking, all caches must be invalidated. The parity checking enable
bit can then be set or cleared without restriction. Parity information in the RAMs is always
generated and kept up-to-date. Only error reporting is masked by this bit.

[5] SMP/nAMP
mode

Signals if the CPU is taking part in coherency or not:

0 = AMP mode, the CPU is not taking part in coherency

1 = SMP mode, the CPU is taking part in coherency.

See AMP mode and SMP mode on page 3-35.

[4] EXCL This bit enables the exclusive behavior of L1 if the processor is used in conjunction with an
L2 cache supporting that behavior:

0 = L1 and L2 caches are inclusive (default)

1 = L1 and L2 caches are exclusive.

[3] F Instruction folding enable. This bit enables the use of instruction folding if program flow
prediction is enabled. See c1, Control Register on page 3-28.

[2] SB Static branch prediction enable. This bit enables the use of static branch prediction if program
flow prediction is enabled. See c1, Control Register on page 3-28.

0 = static branch prediction is disabled

1 = static branch prediction is enabled.

This bit is set on reset.

[1] DB Dynamic branch prediction enable. This bit enables the use of dynamic branch prediction if
program flow prediction is enabled. See c1, Control Register on page 3-28.

0 = dynamic branch prediction is disabled

1 = dynamic branch prediction is enabled.

This bit is set on reset.

[0] RS Return stack enable. This bit enables the use of the return stack if program flow prediction is
enabled. See c1, Control Register on page 3-28.

0 = return stack is disabled

1 = return stack is enabled.

This bit is set on reset.

Table 3-21 Auxiliary Control Register bit functions (continued)

Bits Field Function
3-34 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
AMP mode and SMP mode

By default, the processor is in AMP mode (bit [5] reset to 0). To prevent coherent data
corruption, the sequence to enable SMP mode for MP11 CPUs is:

1. If the SCU is disabled, enable it by writing a 1 to the SCU enable bit of the SCU
Control Register.

Note
 ARM recommends that you invalidate the SCU tag RAMs before enabling the

SCU. Invalidate the SCU tag RAMs with the appropriate command in the SCU
Invalidate All Register. Not invalidating the SCU tag RAMs incurs a performance
penalty.

2. Write the SMP/nAMP bit as 1.

3. Disable interrupts.

4. Clean and invalidate the data cache.

5. Enable interrupts.

Similarly, the sequence to enable AMP mode for MP11 CPUs is:

1. Disable interrupts.

2. Clean and invalidate the data cache.

3. Write the SMP/nAMP bit as 0.

4. Data Synchronization Barrier.

5. Enable interrupts.

Note
 In AMP mode, shared write-back write-allocate regions are treated as noncacheable like
other shared regions.

3.4.9 c1, Coprocessor Access Control Register

The Coprocessor Access Control Register controls accesses to all coprocessors other
than CP14 and CP15. For MPCore, this is access to VFP because MP11 CPUs do not
support generic coprocessors.

The Coprocessor Access Control Register is:

• in CP15 c1

• a 32-bit read/write register

• accessible in privileged modes only.

You can access the Coprocessor Access Control Register by reading or writing CP15 c1
with the Opcode_2 field set to 2:
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-35
Unrestricted Access Non-Confidential

Control Coprocessor CP15
MRC p15,0,<Rd>,c1,c0,2; Read Coprocessor Access Control Register
MCR p15,0,<Rd>,c1,c0,2; Write Coprocessor Access Control Register

Figure 3-20 shows the format of the Coprocessor Access Control Register.

Figure 3-20 Coprocessor Access Control Register format

Table 3-22 shows the bit-pair access rights encoding for each coprocessor connected to
the processor.

After updating this register you must execute an Instruction Memory Barrier (IMB)
sequence. None of the instructions executed after changing this register and before the
IMB must be coprocessor instructions affected by the change in coprocessor access
rights.

After a system reset, all coprocessor access rights are set to Access denied.

If a coprocessor is not implemented then attempting to write the coprocessor access
rights bits for that entry to values other than b00 has no effect. This mechanism can be
used by software to determine which coprocessors are present.

3.4.10 c2, Translation Table Base Register 0

The Translation Table Base Register 0 holds the physical address of the first-level
translation table.

The Translation Table Base Register 0 is:

• in CP15 c2

• a 32 bit read/write register

• accessible in privileged modes only.

SBZ/UNP

31 24 23 22 21 20 19 1 0

SBZ/UNP cp11 cp10

Table 3-22 Coprocessor access rights

Bits Meaning

b00 Access denied. Attempts to access the corresponding coprocessor generate an Undefined exception.

b01 Supervisor access only.

b10 Reserved.

b11 Full access.
3-36 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Use Translation Table Base Register 0 for process-specific addresses, where each
process maintains a separate first-level page table. On a context switch you must modify
both Translation Table Base Register 0 and the Translation Table Base Control Register,
if appropriate.

You can access the Translation Table Base Register 0 by reading or writing CP15 c2
with the Opcode_2 field set to 0:

MRC p15, 0, <Rd>, c2, c0, 0; Read Translation Table Base Register 0
MCR p15, 0, <Rd>, c2, c0, 0; Write Translation Table Base Register 0

Figure 3-21 shows the format of the Translation Table Base Register 0. For an
explanation of N in the figure, see c2, Translation Table Base Control Register on
page 3-39.

Figure 3-21 Translation Table Base Register 0 format

Table 3-23 shows the bit assignment of the Translation Table Base Register 0. For an
explanation of N in the table, see c2, Translation Table Base Control Register on
page 3-39.

0Translation table base 0

31 14-N 13-N 5 4 3 2 1 0

UNP/SBZ RGN 0 S

Table 3-23 Translation Table Base Register 0 bit functions

Bits Field Function

[31:14-N] Translation table base 0 Pointer to the level one translation table

[13-N:5] - UNP/SBZ

[4:3] RGN Outer cachable attributes for page table walking:

b00 = outer noncachable

b01 = outer cachable write-back cached, write allocate

b10 = outer cachable write-through, no allocate on write

b11 = outer cachable write-back, no allocate on write.

[2] - UNP/SBZ

[1] S The page table walk is to shared (1) or nonshared (0) memory

[0] - UNP/SBZ
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-37
Unrestricted Access Non-Confidential

Control Coprocessor CP15
3.4.11 c2, Translation Table Base Register 1

The Translation Table Base Register 1 holds the physical address of the first-level table.
The expected use of the Translation Table Base Register 1 is for OS and I/O addresses.

The Translation Table Base Register 1 is:

• in CP15 c2

• a 32 bit read/write register

• accessible in privileged modes only.

You can access Translation Table Base Register 1 by reading or writing CP15 c2 with
the Opcode_2 field set to 0:

MRC p15, 0, <Rd>, c2, c0, 1 Read Translation Table Base Register 1
MCR p15, 0, <Rd>, c2, c0, 1; Write Translation Table Base Register 1

Figure 3-22 shows the format of the Translation Table Base Register 1.

Figure 3-22 Translation Table Base Register 1 format

Writing to CP15 c2 updates the pointer to the first-level translation table from the value
in bits [31:14] of the written value. Bits [13:5] Should Be Zero. Translation Table Base
Register 1 must reside on a 16KB page boundary.

Table 3-24 shows the bit assignment of the Translation Table Base Register 1.

UNP/SBZ

Translation table base 1 UNP/SBZ RGN 0 S

Table 3-24 Translation Table Base Register 1 bit functions

Bits Field Function

[31:14] Translation table base 1 Pointer to the level one translation table.

[13:5] - UNP/SBZ.

[4:3] RGN Outer cachable attributes for page table walking:

b00 = outer noncachable

b01 = outer cachable write-back cached, write allocate

b10 = outer cachable write-through, no allocate on write

b11 = outer cachable write-back, no allocate on write.

[2] P Indicates to the memory controller that, if supported ECC is (1) enabled or (0)
disabled. For MP11 CPUs this bit Should Be Zero.
3-38 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
3.4.12 c2, Translation Table Base Control Register

The Translation Table Base Control Register determines if a page table miss for a
specific VA uses, for its page table walk, either:

• Translation Table Base Register 0. The recommended use is for task-specific
addresses.

• Translation Table Base Register 1. The recommended use is for operating system
and I/O addresses.

The Translation Table Base Control Register is:

• in CP15 c2

• a 32 bit read/write register

• accessible in privileged modes only.

You can access the Translation Table Base Control Register by reading or writing CP15
c2 with the Opcode_2 field set to 2:

MRC p15, 0, <Rd>, c2, c0, 2 ; Read Translation Table Base Control Register
MCR p15, 0, <Rd>, c2, c0, 2 ; Write Translation Table Base Control Register

Figure 3-23 shows the format of the Translation Table Base Control Register.

Figure 3-23 Translation Table Base Control Register format

The page table base register is selected as follows:

1. If N = 0, always use Translation Table Base Register 0. This is the default case at
reset. It is backwards compatible with ARMv5 or earlier processors.

2. If N is greater than 0, then if bits [31:32-N] of the Virtual Address are all 0, use
Translation Table Base Register 0, otherwise use Translation Table Base Register
1. N must be in the range 0-7.

[1] S The page table walk is to shared (1) or nonshared (0) memory.

[0] - UNP/SBZ

Table 3-24 Translation Table Base Register 1 bit functions (continued)

Bits Field Function

N

31 3 2 0

UNP/SBZ
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-39
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Reading from CP15 c2 returns the size of the page table boundary for Translation Table
Base Register 0. Bits [31:3] Should Be Zero.

Writing to CP15 c2 updates the size of the first-level translation table base boundary for
Translation Table Base Register 0. Bits [31:3] Should Be Zero.

Table 3-25 shows the values of N for Translation Table Base Register 0.

3.4.13 c3, Domain Access Control Register

The Domain Access Control Register holds the access permissions for a maximum of
16 domains.

The Domain Access Control Register is:

• in CP15 c3

• a 32-bit read/write register

• accessible in privileged modes only.

You can access the Domain Access Control Register by reading or writing CP15 c3 with
the CRm and Opcode_2 fields set to 0:

MRC p15, 0, <Rd>, c3, c0, 0; Read Domain Access Control Register
MCR p15, 0, <Rd>, c3, c0, 0; Write Domain Access Control Register

Figure 3-24 on page 3-41 shows the 2-bit domain access permission fields of the
Domain Access Control Register.

Table 3-25 Values of N for Translation Table Base Register 0

N
Translation Table Base
Register 0 page table
boundary size

0 16KB

1 8KB

2 4KB

3 2KB

4 1KB

5 512-byte

6 256-byte

7 128-byte
3-40 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Figure 3-24 Domain Access Control Register format

Table 3-26 shows the encoding of the bits in the Domain Access Control Register.

3.4.14 c5, Data Fault Status Register

The Data Fault Status Register (DFSR) holds the source of the last data fault. The Data
Fault Status Register indicates the domain and type of access attempted when an abort
occurred.

The Data Fault Status Register is:

• in CP15 c5

• a 32-bit read/write register

• accessible in privileged modes only.

You can access the Data Fault Status Register by reading or writing CP15 c5 with the
CRm and Opcode_2 fields set to 0:

MRC p15, 0, <Rd>, c5, c0, 0; Read Data Fault Status Register
MCR p15, 0, <Rd>, c5, c0, 0; Write Data Fault Status Register

Figure 3-25 on page 3-42 shows the format of the Data Fault Status Register.

D0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1

Table 3-26 Encoding of domain bits in CP15 c3

Value Access type Description

b00 No access Any access generates a domain fault

b01 Client Accesses are checked against the access permission bits in the TLB entry

b10 Reserved Any access generates a domain fault

b11 Manager Accesses are not checked against the access permission bits in the TLB entry, so a permission
fault cannot be generated
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-41
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Figure 3-25 Data Fault Status Register format

Table 3-27 shows the bit assignment of the Data Fault Status Register.

See Fault status and address on page 5-38 for the encodings of the DFSR bits.

Reading CP15 c5 with Opcode_2 set to 0 returns the value of the Data Fault Status
Register.

Writing CP15 c5 with Opcode_2 set to 0 sets the Data Fault Status Register to the value
of the data written. This is useful for a debugger to restore the value of the Data Fault
Status Register. The register must be written using a read-modify-write sequence.

UNP/SBZ Domain StatusS

RW
SD

31 13 12 11 10 9 8 7 4 3 0

0 0

Table 3-27 Data Fault Status Register bit functions

Bits Field Function

[31:13] - UNP/SBZ.

[12] SD External Abort Qualifier:

1= External Abort marked as SLVERR

0= External Abort marked as DECERRa.

[11] RW Not Read/Write. Indicates what type of access caused the abort:

0 = read

1 = write.

In case of aborted CP15 operations, this bit is set to 1.

[10] S Part of the Status field. See bits [3:0] in this table.

[9:8] - Always read as 0.

[7:4] Domain Specifies which of the 16 domains (D15-D0) was accessed when a data fault occurred.

[3:0] Status Type of fault generated, see Fault status and address on page 5-38.

a. SLVERR and DECERR are the two possible types of abort reported in an AXI bus.
3-42 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
3.4.15 c5, Instruction Fault Status Register

The Instruction Fault Status Register (IFSR) holds the source of the last instruction
fault. The IFSR indicates the type of access attempted when an abort occurred.

The Instruction Fault Status Register is:

• in CP15 c5

• a 32-bit read/write register

• accessible in privileged modes only.

You can access the IFSR by reading or writing CP15 c5 with the Opcode_2 field set to 1:

MRC p15, 0, <Rd>, c5, c0, 1; Read Instruction Fault Status Register
MCR p15, 0, <Rd>, c5, c0, 1; Write Instruction Fault Status Register

Figure 3-26 shows the format of the Instruction Fault Status Register.

Figure 3-26 Instruction Fault Status Register format

Table 3-28 shows the bit assignment of the Instruction Fault Status Register.

See Fault status and address on page 5-38 for the encoding of the IFSR bits

Status

31 13 12 11 10 9 8 7 4 3 0

UNP/SBZ

SD
SBZ

S SBZ Domain

Table 3-28 Instruction Fault Status Register bit functions

Bits Field Function

[31:13] - UNP/SBZ

[12] SD External abort qualifier:

1 = External Abort marked as SLVERR

0 = External Abort marked as DECERR.

[11] - Always reads as 0

[10] S Part of the status field

[9:8] - Always reads as 0

[7:4] Domain Specifies which of the 16 domains (D15-D0) was accessed when a data fault occurred

[3:0] Status Type of fault generated, see Fault status and address on page 5-38
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-43
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Reading CP15 c5 with the Opcode_2 field set to 1 returns the value of the IFSR.

Writing CP15 c5 with the Opcode_2 field set to 1 sets the IFSR to the value of the data
written. This is useful for a debugger to restore the value of the IFSR. The register must
be written using a read-modify-write sequence. Bits [31:4] Should Be Zero.

3.4.16 c6, Fault Address Register

The Fault Address Register (FAR) holds the Modified Virtual Address (MVA) of the
fault when a precise fault occurs. The FAR is only updated for precise data faults, not
for imprecise data faults or prefetch faults.

The FAR is:

• in CP15 c6

• a 32-bit read/write register

• accessible in privileged modes only.

Writing CP15 c6 with Opcode_2 set to 0 sets a FAR to the value of the data written. This
is useful for a debugger to restore the value of a FAR.

The processor also updates the FAR on debug exception entry because of watchpoints.
This is architecturally Unpredictable. See Effect of a debug event on CP15 registers on
page 12-31 for more details.

3.4.17 c6, Watchpoint Fault Address Register

Reading CP15 c6 returns the Watchpoint Fault Address Register (WFAR) as specified
by the Opcode_2 value.

You can access the Watchpoint Fault Address Register by reading or writing CP15 c6
with the Opcode_2 field set to 1:

MRC p15, 0, <Rd>, c6, c0, 1; Read Watchpoint Fault Address Register
MCR p15, 0, <Rd>, c6, c0, 1; Write Watchpoint Fault Address Register

The WFAR holds the Virtual Address of the instruction that triggered the watchpoint.
The contents are Unpredictable after a precise Data Abort or Instruction Abort occurs.

If the watchpoint is taken when in ARM state, the WFAR contains the address of the
instruction that triggered it plus 0x8. If the watchpoint is taken while in Thumb state, the
WFAR contains the address of the instruction that triggered it plus 0x4. If the watchpoint
is taken while in Jazelle state, the WFAR contains the address of the instruction causing
it.

Writing CP15 c6 with Opcode_2 set to 1 sets the WFAR to the value of the data written.
This is useful for a debugger to restore the value of the WFAR.
3-44 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
3.4.18 c7, Cache Operations Register

The purpose of c7 is to:

• control these operations:

— clean and invalidate instruction and data caches

— flush prefetch buffer

— flush branch target address cache

— virtual to physical address translation.

• implement the Data Synchronization Barrier (DSB) operation

• implement the Data Memory Barrier (DMB) operation

• implement the Wait For Interrupt clock control function.

You can use c7 to control the instruction and data caches. You can also use it to
implement similar functions on prefetch buffers and branch target caches.

You can use the following instruction to write to CP15 c7:

MCR p15,0, <Rd>, c7, <CRm>, <Opcode_2>

The required cache operation is selected by the Opcode_2 and CRm fields in the MCR
instruction used to write CP15 c7.

Table 3-29 on page 3-47 shows the operations that you can perform using CP15 c7.

Writing c7 with a combination of CRm and an Opcode_2 not listed in Table 3-29 on
page 3-47 gives Unpredictable results.

If Opcode_1 = 0, these instructions are applied to a level one cache system. All other
Opcode_1 values are reserved.

All CP15 c7 operations can only be performed in a privileged mode, except Data
Synchronization Barrier, Flush Prefetch Buffer, and Data Memory Barrier. These can
be performed in User and privileged modes. Attempting to perform a privileged
operation in User mode results in an Undefined Instruction exception.

The following definitions apply to Table 3-29 on page 3-47:

Wait for interrupt

Puts the ARM processor into a low power state and stops it executing
further until an interrupt, or a debug request, occurs. Interrupt and debug
events always cause the processor to restart, irrespective of whether the
interrupt is masked. A debug event restarts the processor only if debug is
enabled.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-45
Unrestricted Access Non-Confidential

Control Coprocessor CP15
When an interrupt occurs, the MCR instruction completes and either the
next instruction executes (if an interrupt event and the interrupt is
masked), or the IRQ or FIQ handler is entered as normal. The return link
in R14_irq or R14_fiq contains (MCR instruction address + 8), so that the
normal instruction used for interrupt return (SUBS PC,R14, #4) returns to
the instruction following the MCR.

Clean Applies to write-back data caches. If the cache line targeted by the Clean
operation contains stored data that has not yet been written out to main
memory, it is written to main memory, and the line is marked as clean.

Invalidate This operation marks the cache line (or all the lines in the cache) as
invalid, so that no cache hits occur for that line until it is re-allocated to
an address. For write-back data caches, an invalidate does not include
cleaning the cache line unless you use the Clean and invalidate operation.

Data Synchronization Barrier

The Data Synchronization Barrier (DSB) operation acts as a special kind
of memory barrier. In the program flow, the DSB occurs at the MCR
instruction that performs the DSB. The DSB completes when:

• all explicit reads and writes before the DSB complete

• all Cache, Branch predictor and TLB maintenance operations
before the DSB complete.

No instruction after the DSB can execute until the DSB completes.

Data Memory Barrier

The Data Memory Barrier (DMB) is a general memory barrier with the
following behavior. This description considers the program flow as
executing instructions in program order. The DMB occurs at the MCR
instruction that performs the DMB.

• Any explicit memory access by an instruction before the DMB is
globally observed before any memory accesses caused by an
instruction after the DMB.

• The DMB has no effect on the ordering of any other instructions
executing on the processor.

As such, DMB ensures the apparent order of the explicit memory
operations before and after the DMB instruction, but does not ensure the
completion of those memory operations. For more information see the
ARM Architecture Reference Manual.
3-46 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Flush Prefetch Buffer

In the program flow, a Flush Prefetch Buffer occurs at the MRC instruction
that performs the Flush Prefetch Buffer operation. It has the effect that all
instructions occurring in program order after this instruction are fetched
from the memory system after the execution of the Flush Prefetch Buffer,
including the level one cache. This operation is useful for ensuring the
correct execution of self-modifying code. See Explicit memory barriers
on page 5-28.

Data The value that is written to CP15 c7. This is the value in the Rd register
specified in the MCR instruction.

If Table 3-29 shows the data must be a Virtual Address, it does not have
to be cache line aligned. This address is looked up in the cache for the
particular operation. Invalidation and cleaning operations have no effect
if they miss in the cache. If the corresponding entry is not in the TLB,
these instructions can cause a TLB miss exception or hardware page table
walk, depending on the miss handling mechanism.

For the cache control operations, the Virtual Addresses that are passed to
the cache are not translated by the FCSE extension.

If Table 3-29 shows the data must be Set/Way format, it identifies the
cache line that the operation is to be applied to by specifying which cache
Set it belongs to and what its Index is within the Set. The Index
corresponds to the number of the cache way, and the Set number
corresponds to the line number within a cache way.

Table 3-29 shows the cache operation functions and the associated data and instruction
formats for CP15 c7.

Table 3-29 Cache operation functions

Function Data Instruction

Wait For Interrupt SBZ MCR p15, 0, <Rd>, c7, c0, 4

Invalidate Entire Instruction Cache. Also flushes the branch target cache SBZ MCR p15, 0, <Rd>, c7, c5, 0

Invalidate Instruction Cache Line (using MVA) MVA MCR p15, 0, <Rd>, c7, c5, 1

Invalidate Instruction Cache Line (using Set/Way) Set/Way MCR p15, 0, <Rd>, c7, c5, 2

Flush Prefetch Buffera SBZ MCR p15, 0, <Rd>, c7, c5, 4

Flush Entire Branch Target Cache SBZ MCR p15, 0, <Rd>, c7, c5, 6

Flush Branch Target Cache Entry MVAb MCR p15, 0, <Rd>, c7, c5, 7
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-47
Unrestricted Access Non-Confidential

Control Coprocessor CP15
The cache invalidation operations apply to all cache locations, including those locked
in the cache. An explicit flush of the relevant lines in the branch target cache must be
performed after invalidation of instruction cache lines or the results are Unpredictable.
This is not required after an entire instruction cache invalidation.

The operations that act on a single cache line identify the line using the contents of Rd
as the address, passed in the MCR instruction. The following sections describe the formats
used:

• Set/Way format

• Modified Virtual Address (MVA) format on page 3-50.

Set/Way format

Figure 3-27 on page 3-49 shows the Set/Way format you can use to specify a line in the
cache that must be accessed.

Invalidate Entire Data Cache SBZ MCR p15, 0, <Rd>, c7, c6, 0

Invalidate Data Cache Line (using MVA) MVA MCR p15, 0, <Rd>, c7, c6, 1

Invalidate Data Cache Line (using Set/Way) Set/Way MCR p15, 0, <Rd>, c7, c6, 2

Invalidate Both Caches. Also flushes the branch target cache SBZ MCR p15, 0, <Rd>, c7, c7, 0

Clean Entire Data Cache SBZ MCR p15, 0, <Rd>, c7, c10, 0

Clean Data Cache Line (using MVA) MVA MCR p15, 0, <Rd>, c7, c10, 1

Clean Data Cache Line (using Set/Way) Set/Way MCR p15, 0, <Rd>, c7, c10, 2

Data Synchronization Barriera SBZ MCR p15, 0, <Rd>, c7, c10, 4

Data Memory Barriera SBZ MCR p15, 0, <Rd>, c7, c10, 5

Clean and Invalidate Entire Data Cache SBZ MCR p15, 0, <Rd>, c7, c14, 0

Clean and Invalidate Data Cache Line (using MVA) MVA MCR p15, 0, <Rd>, c7, c14, 1

Clean and Invalidate Data Cache Line (using Set/Way) Set/Way MCR p15, 0, <Rd>, c7, c14, 2

a. These operations are accessible in both User and privileged modes of operation. All other operations are only accessible in
privileged modes of operation.

b. The range of MVA bits used in this function is different to the range of bits used in other functions that have MVA data.

Table 3-29 Cache operation functions (continued)

Function Data Instruction
3-48 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Figure 3-27 Register 7 Set/Way format

Table 3-30 shows the bit assignment for the Set/Way operations using CP15 c7.

The value of S in Table 3-31 is dependent on the cache size. Table 3-31 shows the
relationship of cache sizes and the S parameter value.

See c0, TLB Type Register on page 3-13 for details in instruction and data cache size.

Example 3-1 is an example using the command Clean Data Cache Line (using
Set/Way).

Example 3-1 Clean Data Cache Line (using Set/Way)

;code is specific to MP11 CPUs with 32KB caches
MOV R0, #0:SHL:5

seg_loop
MOV R1, #0:SHL:30

SBZ/UNP

31 30 29 5 4 0

Way SBZ/UNP Set

S+5 S+4

Table 3-30 Bit fields for Set/Way operations using CP15 c7

Bits Field Function

[31:30] Way Selects the way for the c7 Set/Way operations

[29:S+5] - SBZ/UNP

[S+4:5] Set Selects the set for the c7 Set/Way operations

[4:0] - SBZ/UNP

Table 3-31 Cache size and S parameter dependency

Cache size S parameter value

16KB 7

32KB 8

64KB 9
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-49
Unrestricted Access Non-Confidential

Control Coprocessor CP15
line_loop
ORR R2,R1,R0
MCR p15,0,R2,c7,c10,2
ADD R1,R1,#1:SHL:30
CMP R1,#0
BNE line_loop
ADD R0,R0,#1:SHL:5
CMP R0,#1:SHL:13
BNE seg_loop

Modified Virtual Address (MVA) format

The MVA format is useful for flushing a particular address or range of addresses in the
caches. Figure 3-28 shows the MVA format for c7 operations:

• Invalidate Instruction Cache Line

• Invalidate Data Cache Line

• Clean Data Cache Line

• Prefetch Instruction Cache Line

• Clean and Invalidate Data Cache Line.

Figure 3-28 CP15 Register c7 MVA format

Bits [4:0] are ignored.

Figure 3-29 shows the MVA format for c7 Flush Branch Target Cache Entry operation.

Figure 3-29 CP15 c7 MVA format for Flush Branch Target Cache Entry operation

Bits [2:0] are ignored.

Modified virtual address

31 5 4 0

IGN

Modified virtual address

31 3 2 0

IGN
3-50 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Invalidate, Clean, and Clean and Invalidate, Entire Data Cache operations

CP15 c7 specifies operations for cleaning the entire data cache, and also for performing
a clean and invalidate of the entire data cache. These are blocking operations that can
be interrupted. If they are interrupted, the r14 value that is captured on the interrupt is
the address of the instruction that launched the cache operation + 4. This enables the
standard return mechanism for interrupts to restart the operation.

All operations on entire Data and or Instruction caches are interruptible and restartable.
When interrupted, these operations stop and automatically restart from where they were
interrupted.

User access to CP15 c7 operations

A small number of CP15 c7 operations can be executed by code while in User mode.
Attempting to execute a privileged operation in User mode using CP15 c7 results in an
Undefined Instruction exception.

3.4.19 c7, VA to PA operations

This section describes VA to PA operations in:

• VA to PA Translation Register

• PA Register on page 3-52.

VA to PA Translation Register

A write to the VA to PA Translation Register translates the true virtual address (not the
MVA) provided by a general-purpose register (<Rn> Field) and stores the
corresponding physical address in the PA Register. Figure 3-30 shows the register
format.

Figure 3-30 VA to PA register format

The VA to PA translation can only be performed in privileged mode and uses the current
ASID (in the Context ID Register) to perform the comparison in the TLB.

The VA to PA Translation Register is accessed by writing to CP15 c7 register with the
<CRm> field set to c8 and the Opcode_2 field being used to select which kind of
permission check is performed during the translation:

31 10 9 0

SBZVirtual address
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-51
Unrestricted Access Non-Confidential

Control Coprocessor CP15
MCR p15,0,<Rn>,c7,c8,0; VA to PA translation with privileged read permission check
MCR p15,0,<Rn>,c7,c8,1; VA to PA translation with privileged write permission check
MCR p15,0,<Rn>,c7,c8,2; VA to PA translation with user read permission check
MCR p15,0,<Rn>,c7,c8,3; VA to PA translation with user write permission check

PA Register

The purpose of the PA Register is to hold:

• the PA after a successful translation

• the source of the abort for an unsuccessful translation.

The PA Register is:

• in CP15 c7

• a 32 bit read/write register

• accessible in privileged modes only.

The PA Register format depends on the value of bit 0, which signals whether or not there
has been an error during the VA to PA translation.

The PA Register is accessed by reading to CP15 c7 with <CRm> field set to c4 and
Opcode_2 field set to 0:

MRC p15,0,<Rd>,c7,c4,0; Read PA register

If the translation has aborted, bits[5:1] give the encoding of the source of the abort as
shown in Figure 3-31. See c5, Data Fault Status Register on page 3-41 and c5,
Instruction Fault Status Register on page 3-43 for information on the Fault Status
Register bits and the SD bit.

Figure 3-31 PA Register aborted translation

If the translation has completed successfully, PA register format is as shown in
Figure 3-32 on page 3-53.

1

31 7 6 5 1 0

SBZ FSR[10,3:0]

SD
3-52 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Figure 3-32 PA Register successful translation

Table 3-32 shows the bit assignments of the PA register.

3.4.20 c8, TLB Operations Register

The TLB Operations Register either:

• invalidates all the unlocked entries in the TLB

• invalidates all TLB entries for an area of memory before the MMU remaps it

0PA

31 9 8 7 6 5 4 3 2 1 0

SBZ S Type 0

OUTERINNER

12 11

Table 3-32 PA Register bit functions

Bits Field Function

[31:12] PA Physical address

[11:9] - SBZ/RAZ

[8] S Bit Shareable attribute

[7:6] Type Memory Type:

b00 = Strongly ordered

b01 = Device memory

b10 = Normal memory

b11 = Reserved.

[5:4] Inner Signals region inner attributes for normal memory type (type = b10):

b11 = Inner write-back. No write-allocate (treated as write allocate).

b10 = Inner write-through. No write-allocate (treated as inner noncachable).

b01 = Inner write-back write-allocate.

b00 = Inner noncachable.

[3:2] Outer Signals region outer attributes for normal memory type (type = b10):

b11 = Outer write-back. No write-allocate.

b10 = Outer write-through. No write-allocate.

b01 = Outer write-back write-allocate.

b00 = Outer noncachable.

[1:0] - SBZ/RAZ
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-53
Unrestricted Access Non-Confidential

Control Coprocessor CP15
• invalidates all TLB entries that match an ASID value.

The TLB Operations Register is:

• in CP15 c8

• a 32-bit write-only register

• accessible in privileged modes only.

The TLB Operations Register, CP15 c8, is a write-only register used to manage the
Translation Lookaside Buffer (TLB).

The defined TLB operations are listed in Table 3-33. The function to be performed is
selected by the Opcode_2 and CRm fields in the MCR instruction used to write CP15 c8.
Writing other Opcode_2 or CRm values is Unpredictable.

Reading from CP15 c8 is Unpredictable.

Table 3-33 shows the TLB Operations Register instructions.

The CRm value indicates to the hardware what type of access caused the TLB function
to be invoked.

Table 3-34 shows the CRm values for the TLB Operations Register, and their meanings.
All other CRm values are reserved

Table 3-33 TLB Operations Register instructions

Function Data Instruction

Invalidate TLB SBZ MCR p15,0,<Rd>,c8,<CRm>,0

Invalidate TLB Single Entry by MVA with ASID match MVA/ASID MCR p15,0,<Rd>,c8,<CRm>,1

Invalidate TLB Entries on ASID Match ASID MCR p15,0,<Rd>,c8,<CRm>,2

Invalidate TLB Single Entry on MVA only MVA MCR p15,0,<Rd>,c8,<CRm>,3

Table 3-34 CRm values for TLB Operations Register

CRm Meaning

c5 Instruction TLB operation

c6 Data TLB operation

c7 Unified TLB operation
3-54 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Note
 The processor has a unified TLB. Any TLB operations specified for Instruction or Data
TLB perform the equivalent operation on the unified TLB.

The Invalidate TLB Single Entry operation uses the Virtual Address as an argument.
Figure 3-33 shows the Virtual Address format of the TLB Operations Register.

Figure 3-33 TLB Operations Register Virtual Address format

The Invalidate TLB Entries on ASID Match operation requires an ASID as an argument.
Figure 3-34 shows the ASID format of the TLB Operations Register.

Figure 3-34 TLB Operations Register ASID format

Functions that update the contents of the TLB occur in program order. Therefore, an
explicit data access before the TLB function uses the old TLB contents, and an explicit
data access after the TLB function uses the new TLB contents. For instruction accesses,
TLB updates are guaranteed to have taken effect before the next pipeline flush. This
includes flush prefetch buffer operations and exception return sequences.

Invalidate TLB

Invalidate TLB invalidates all the unlocked entries in the TLB.

Invalidate TLB Single Entry

You can use Invalidate TLB Single Entry to invalidate an area of memory before remap.
You must perform an Invalidate TLB Single Entry of a Virtual Address (VA) in each
area to be remapped (section, small page, or large page).

This function invalidates a TLB entry that matches the provided VA and ASID, or a
global TLB entry that matches the provided VA. This function invalidates a matching
locked entry.

31 10 9 8 7 0

Modified virtual address SBZ ASID

31 8 7 0

SBZ ASID
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-55
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Invalidate TLB Entries on ASID Match

This is a single interruptible operation that invalidates all TLB entries that match the
provided ASID value. This function invalidates locked entries. Entries marked as global
are not invalidated by this function.

In MP11 CPUs, this operation takes several cycles to complete and the instruction is
interruptible. When interrupted the r14 state is set to indicate that the MCR instruction has
not executed. Therefore, r14 points to the address of the MCR + 4. The interrupt routine
then automatically restarts at the MCR instruction.

If this operation is interrupted and later restarted, any entries fetched into the TLB by
the interrupt that uses the provided ASID are invalidated by the restarted invalidation.

Invalidate TLB entries on MVA only

You can use Invalidate TLB Entries to invalidate an area of memory prior to remapping.
You must perform an Invalidate TLB Single Entry of a Virtual Address (VA) in each
area to be remapped (section, small page, or large page).

This function invalidates a TLB entry that matches the provided VA. This entry can be
global or nonglobal. If the entry is nonglobal the ASID matching is ignored. This
function invalidates a matching locked entry.

3.4.21 c9, Data Cache Lockdown Register

The Data Cache Lockdown Register provides a means to lock down the cache and
therefore provide some control over pollution that applications might cause. With these
registers you can lock down each cache way independently.

The Data Cache Lockdown Register is:

• in CP15 c9

• a 32-bit read/write register

• accessible in privileged modes only.

You can access the Data Cache Lockdown Register by reading or writing CP15 c9 with
the CRm field set to c0 and the Opcode_2 field set to 0. For example:

MRC p15, 0, <Rd>, c9, c0, 0 ; Read Data Cache Lockdown Register
MCR p15, 0, <Rd>, c9, c0, 0 ; Write Data Cache Lockdown Register

MP11 CPUs only support one method of using cache lockdown registers, called Format
C. This method is a cache way based locking scheme. It enables you to lockdown each
cache way independently. This gives you some control over cache pollution caused by
particular applications, and provides a traditional lockdown function for locking critical
regions into the cache.
3-56 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
A locking bit for each cache way determines if the cache allocation mechanism is able
to access that cache way.

MP11 CPUs have an associativity of 4. If all ways are locked, the MP11 CPUs behave
as if only ways 3 to 1 are locked and way 0 is unlocked.

Figure 3-35 shows the format of the Data Cache Lockdown Register.

Figure 3-35 Data Cache Lockdown Register format

The L bits for cache ways 3 to 0 are bits [3:0] respectively.

L = 0 Allocation to the cache way is determined by the standard replacement
algorithm (reset state).

L = 1 No allocation is performed to this cache way.

A cache lockdown register must only be changed when it is certain that all outstanding
accesses that might cause a cache line fill have completed. For this reason, a Data
Synchronization Barrier instruction must be executed before the cache lockdown
register is changed.

The following procedure for lock down into a data cache way i, with N cache ways,
using Format C, ensures that only the target cache way i is locked down.

This is the architecturally defined method for locking data into caches:

1. Ensure that no processor exceptions can occur during the execution of this
procedure, by disabling interrupts. If this is not possible, all code and data that any
exception handlers use that can be called must be treated as code and data before
step 2.

2. Ensure that all data used by the following code, apart from the data that is to be
locked down, is either:

• in an uncachable area of memory

• in an already locked cache way.

3. Ensure that the data to be locked down is in a Cachable area of memory.

4. Ensure that the data to be locked down is not already in the cache, using cache
Clean and/or Invalidate instructions as appropriate.

31 4 3 0

SBO

L bit for each cache way
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-57
Unrestricted Access Non-Confidential

Control Coprocessor CP15
5. Enable allocation to the target cache way by writing to CP15 c9, with the CRm
field set to 0, setting L equal to 0 for bit i and L equal to 1 for all other ways.

6. Ensure that the memory cache line is loaded into the cache by using an LDR
instruction to load a word from the memory cache line, for each of the cache lines
to be locked down in cache way i.

7. Write to CP15 c9, CRm = c0, setting L to 1 for bit i and restore all the other bits
to the values they had before this routine was started.

3.4.22 c10, TLB Lockdown Register

The TLB Lockdown Register controls where hardware page table walks place the TLB
entry in either:

• the set associative region of the TLB

• the lockdown region of the TLB, and if in the lockdown region, which entry to
write.

The lockdown region of the TLB contains eight entries. See TLB organization on
page 5-4 for a description of the structure of the TLB.

The TLB Lockdown Register is:

• in CP15 c10

• 32-bit read/write register

• accessible in privileged modes only.

You can access the TLB Lockdown Register by reading or writing CP15 c10 with the
Opcode_2 field set to 0:

MRC p15, 0, <Rd>, c10, c0, 0; Read TLB Lockdown victim
MCR p15, 0, <Rd>, c10, c0, 0; Write TLB Lockdown victim

Figure 3-36 shows the format of the TLB Lockdown Register.

Figure 3-36 TLB Lockdown Register format

Writing the TLB Lockdown Register with the preserve bit (P bit) set to:

1 Means subsequent hardware page table walks place the TLB entry in the
lockdown region at the entry specified by the victim, in the range 0 to 7.

PSBZ

31 29 28 26 25 1 0

Victim SBZ/UNP
3-58 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
0 Means subsequent hardware page table walks place the TLB entry in the
set associative region of the TLB.

3.4.23 c10, Memory Region Remap Registers

The MMU remap capability has the following form. The remapping is applied to all
sources of TLB requests.

The Memory Region Remap Registers are accessed by:

MCR/MRC{cond} p15, 0, Rd, c10, c2, 0;access Primary Memory Region Remap Register
MCR/MRC{cond} p15, 0, Rd, c10, c2, 1;access Normal Memory Region Remap Register

These registers are used to remap memory region types. Set bit [28] of the CP15 Control
Register to enable this remapping. The remapping takes place on the page table values,
and overrides the settings specified in the MMU page tables, or the default behavior
when the MMU is turned off. See Page table descriptors when using remapping on
page 5-19.

The Primary Memory Region Remap Register determines the memory type and also the
treatment of the shareable attribute. The Normal Memory Region Remap Register
applies to memory regions which, after the primary region remap, are Normal memory.
This Normal Memory Region Remap Register permits remapping of the inner cachable
and outer cachable attributes.

Table 3-35 shows the primary remapping encodings.

Table 3-35 Primary remapping encodings

Region Encoding

Strongly Ordered 00

Shared Device 01

Normal Memory 10

Unpredictable 11
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-59
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Table 3-36 shows the primary region type encodings.

Table 3-37 shows the fields used for the primary region remap and Table 3-38 on
page 3-61 shows the fields used for the normal memory region remap.

Table 3-36 Inner or outer region type encodings

Inner or outer region Encoding

Noncachable 00

WriteBack, WriteAllocate 01

WriteThrough, Non-WriteAllocate 10

WriteBack, Non-WriteAllocate 11

Table 3-37 Fields for primary region remap

Bits Meaning Reset Value

[31:20] SBZ/UNP RAZ

[19] Remaps shareable attribute when S = 1, for Normal regions 1

[18] Remaps shareable attribute when S = 0, for Normal regions 0

[17] Remaps shareable attribute when S = 1, for Device regions 0

[16] Remaps shareable attribute when S = 0, for Device regions 1

[15:14] Remaps {TEX[0], C, B} = 111 10

[13:12] SBZ/UNP RAZ

[11:10] Remaps {TEX[0], C, B} = 101 10

[9:8] Remaps {TEX[0], C, B} = 100 10

[7:6] Remaps {TEX[0], C, B} = 011 10

[5:4] Remaps {TEX[0], C, B} = 010 10

[3:2] Remaps {TEX[0], C, B} = 001 01

[1:0] Remaps {TEX[0], C, B} = 000 00
3-60 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
The reset value for each field is such that no remapping occurs.

The reset value for each field is such that no remapping occurs.

The remap registers are expected to be static throughout operation. In particular, when
the remap registers are changed, it is IMPLEMENTATION DEFINED when the changes take
effect. It is expected that an invalidation of the TLB and an Instruction Memory Barrier
must be performed before any change of the remap registers can be relied on.

The Shared bit can also be remapped. If the Shared bit as read from the TLB or page
tables is 0, then it is remapped to bit [15] of this register. If the Shared bit as read from
the TLB or page tables is 1, then it is remapped to bit [16] of this register.

The reset value for each field ensures that by default no remapping occurs.

Table 3-38 Fields for normal memory region remap

Bits Meaning Reset Value

[31:30] Remaps Outer attribute for {TEX[0], C, B} = 111 01

[29:28] IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED

[27:26] Remaps Outer attribute for {TEX[0], C, B} = 101 01

[25:24] Remaps Outer attribute for {TEX[0], C, B} = 100 00

[23:22] Remaps Outer attribute for {TEX[0], C, B} = 011 11

[21:20] Remaps Outer attribute for {TEX[0], C, B} = 010 10

[19:18] Remaps Outer attribute for {TEX[0], C, B} = 001 00

[17:16] Remaps Outer attribute for {TEX[0], C, B} = 000 00

[15:14] Remaps Inner attribute for {TEX[0], C, B} = 111 01

[13:12] - RAZ

[11:10] Remaps Inner attribute for {TEX[0], C, B} = 101 10

[9:8] Remaps Inner attribute for {TEX[0], C, B} = 100 00

[7:6] Remaps Inner attribute for {TEX[0], C, B} = 011 11

[5:4] Remaps Inner attribute for {TEX[0], C, B} = 010 10

[3:2] Remaps Inner attribute for {TEX[0], C, B} = 001 00

[1:0] Remaps Inner attribute for {TEX[0], C, B} = 000 00
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-61
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Table 3-39 shows the condition of the memory regions, or types, when the MMU is
disabled prior to remapping.

This enables different mappings to be selected with the MMU disabled, that cannot be
done using only the I, C, and M bits in CP15 c1.

3.4.24 c13, FCSE PID Register

The use of the FCSE PID Register is deprecated. See c13, Context ID Register on
page 3-64.

You can access the FCSE PID Register by reading or writing CP15 c13 with the
Opcode_2 field set to 0:

MRC p15, 0, <Rd>, c13, c0, 0; Read FCSE PID Register
MCR p15, 0, <Rd>, c13, c0, 0; Write FCSE PID Register

Reading from the FCSE PID Register returns the value of the process identifier.

Writing the FCSE PID Register updates the process identifier to the value in bits
[31:25]. Bits [24:0] Should Be Zero. Figure 3-37 shows the format of the FCSE PID
Register.

Figure 3-37 FCSE PID Register format

Addresses issued by the MP11 CPU in the range 0-32MB are translated by the ProcID.
Address A becomes A + (ProcID x 32MB). This translated address is used by the MMU.
Addresses above 32MB are not translated. The ProcID is a 7-bit field, enabling
64 x 32MB processes to be mapped.

Table 3-39 Default memory regions when MMU is disabled

Condition Region type

Data cache enabled Data, Strongly Ordered

Data cache disabled Data, Strongly Ordered

Instruction cache enabled Instruction, Write-back, Write-allocate

Instruction cache disabled Instruction, Strongly Ordered

FCSE PID

31 25 24 0

SBZ
3-62 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Note
 • If ProcID is 0, as it is on Reset, then there is a flat mapping between the integer

core and the MMU.

• Changing the FCSE PID Register value means that the virtual to physical address
mapping is changed, so the BTAC must be flushed.

Figure 3-38 shows how addresses are mapped using CP15 c13.

Figure 3-38 Address mapping using CP15 c13

Changing the ProcID, performing a fast context switch

A fast context switch is performed by writing to CP15 c13 FCSE PID Register. The
contents of the TLBs do not have to be flushed after a fast context switch because they
still hold valid address tags.

After the MCR instruction is used to write the ProcID, from zero to six instructions might
have been fetched with the old ProcID:

{ProcID = 0}
MOV r0, #1; Fetched with ProcID = 0

C13

127

2

1

0

4GB

Modified virtual address (MVA)

input to MMU

Virtual address (VA)

issued by the integer core

32MB

0

32MB

0

64MB

4GB
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-63
Unrestricted Access Non-Confidential

Control Coprocessor CP15
MCR p15,0,r0,c13,c0,0; Fetched with ProcID = 0
A0(any instruction); Fetched with ProcID = 0/1
A1(any instruction); Fetched with ProcID = 0/1
A2(any instruction); Fetched with ProcID = 0/1
A3(any instruction); Fetched with ProcID = 0/1
A4(any instruction); Fetched with ProcID = 0/1
A5(any instruction); Fetched with ProcID = 0/1
A6(any instruction); Fetched with ProcID = 1

You must not rely on this behavior for future compatibility. An IMB must be executed
between changing the ProcID and fetching from locations that are transmitted by the
ProcID.

3.4.25 c13, Context ID Register

The Context ID Register provides information on the current ASID and process ID,
such as for debug logic. Debug logic uses the ASID information to enable
process-dependent breakpoints and watchpoints.

The Context ID Register is:

• in CP15 c13

• a 32-bit read/write register

• accessible in privileged modes only.

You can access the Context ID Register by reading or writing CP15 c13 with the
Opcode_2 field set to 1:

MRC p15, 0, <Rd>, c13, c0, 1; Read Context ID Register
MCR p15, 0, <Rd>, c13, c0, 1; Write Context ID Register

Figure 3-39 shows the format of the Context ID Register.

Figure 3-39 Context ID Register format

The lowest eight bits of the Context ID Register are used for the current ASID that is
running. The upper bits extend the ASID. To ensure that all accesses are related to the
correct context ID, you must ensure that software executes a Data Synchronization
Barrier operation before changing this register.

ASID

31 8 7 0

PROCID
3-64 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
The value of this register can also be used to enable process-dependent breakpoints and
watchpoints. After changing this register, an IMB sequence must be executed before
any instructions are executed from an ASID-dependent memory region. Code that
updates the ASID must be executed from a global memory region.

Note
 Changing the Context ID Register value means that the virtual to physical address
mapping is changed, so the BTAC must be flushed.

3.4.26 c13, Thread ID registers

The thread and process ID registers provides locations to store the IDs of software
threads and processes for OS management purposes.

The thread and process ID registers are:

• in CP15 c13

• three 32-bit read/write registers

— user read/write Thread and Process ID Register

— user read-only Thread and Process ID Register

— privileged only Thread and Process ID Register.

• accessible in different modes:

— the user read/write Thread and Process ID Register is read/write in User and

privileged modes

— the user read-only Thread and Process ID Register is read-only in User

mode, and read/write in privileged modes

— the privileged only Thread and Process ID Register is only accessible in

privileged modes, and is read/write.

You can access the thread registers by reading or writing to CP15 c13 with the
Opcode_2 field set to 2, 3 or 4:

MRC p15,0,<Rd>,c13,c0,2/3/4; Read Thread ID Registers
MCR p15,0,<Rd>,c13,c0,2/3/4; Write Thread ID Registers

Figure 3-40 shows the format of the Thread ID Registers.

Figure 3-40 Thread ID Registers format

Thread ID

31 0
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-65
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Thread ID Registers have different access rights depending on Opcode_2 field value:

Opcode_2 = 2 This register is both user and privileged read/write accessible.

Opcode_2 = 3 This register is user read-only and privileged read/write
accessible.

Opcode_2 = 4 This register is privileged read/write accessible only.

3.4.27 c15, Performance Monitor Control Register (PMNC)

The Performance Monitor Control Register controls the operation of the Count
Register 0 (PMN0), Count Register 1 (PMN1), and Cycle Counter Register (CCNT).
This register:

• controls which events PMN0 and PMN1 monitor

• detects which counter overflowed

• enables and disables interrupt reporting

• extends CCNT counting by six more bits (cycles between counter rollover = 238)

• resets all counters to zero

• enables the entire performance monitoring mechanism.

You can access the Performance Monitor Control Register by reading or writing CP15
c15 with the Opcode_2 field set to 0 and the CRm field set to c12:

MRC p15, 0, <Rd>, c15, c12, 0 ; Read Performance Monitor Control Register
MCR p15, 0, <Rd>, c15, c12, 0 ; Write Performance Monitor Control Register

Figure 3-41 shows the format of the Performance Monitor Control Register.

Figure 3-41 Performance Monitor Control Register format

SBZ

E

31 28 27 20 19 12 11 10 8 7 6 4 3 2 1 0

SBZ/UNP EvtCount0 EvtCount1 Flag IntEn D C P

SBZ
3-66 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Table 3-40 shows the bit assignment of the Performance Monitor Control Register.

Table 3-40 Performance Monitor Control Register bit functions

Bits Field Function

[31:28] - SBZ/RAZ.

[27:20] EvtCount0 Identifies the source of events for Count Register 0, as defined in Table 3-41 on page 3-68.

[19:12] EvtCount1 Identifies the source of events for Count Register 1, as defined in Table 3-41 on page 3-68.

[11] - SBZ/RAZ.

[10:8] Flag Overflow/Interrupt Flag. Identifies which counter overflowed:

Bit [10] = Cycle Counter Register overflow flag

Bit [9] = Count Register 1 overflow flag

Bit [8] = Count Register 0 overflow flag.

For reads:

0 = no overflow (reset)

1 = overflow has occurred.

For writes:

0 = no effect

1 = clear this bit.

[6:4] IntEn Interrupt Enable. Used to enable and disable interrupt reporting for each counter:

Bit [6] = Cycle Counter interrupt enable

Bit [5] = Count Register 1 interrupt enable

Bit [4] = Count Register 0 interrupt enable.

For these registers:

0 = disable interrupt

1 = enable interrupt.

[3] D Cycle count divider:

0 = Cycle Counter Register counts every processor clock cycle

1 = Cycle Counter Register counts every 64th processor clock cycle.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-67
Unrestricted Access Non-Confidential

Control Coprocessor CP15
If an interrupt is generated by this unit, the respective pin of the PMUIRQ bus is
asserted. This output pin can then be routed to an external interrupt controller for
prioritization and masking. This is the only mechanism by which the interrupt is
signaled to the processor.

There is a delay of three cycles between enabling the counter and the counter starting to
count events. In addition, the information used to count events is taken from various
pipeline stages. This means that the absolute counts recorded might vary because of
pipeline effects. This has a negligible effect except in the case where the counters are
enabled for a very short time.

Table 3-41 shows the events that can be monitored using the Performance Monitor
Control Register.

[2] C Cycle Counter Register Reset on write, UNP on read:

0 = no action

1 = reset the Cycle Counter Register to 0x0.

[1] P Count Register Reset on write, UNP on read:

0 = no action

1 = reset both Count Registers to 0x0.

[0] E Enable:

0 = all three counters disabled

1 = all three counters enabled.

Table 3-40 Performance Monitor Control Register bit functions (continued)

Bits Field Function

Table 3-41 Performance monitoring events

Event
number

Event definition

0x00 Instruction cache miss to a cachable location requires fetch from external memory.

0x01 Stall because instruction buffer cannot deliver an instruction. This can indicate an instruction cache
miss or an instruction MicroTLB miss. This event occurs every cycle where the condition is present.

0x02 Stall because of a data dependency. This event occurs every cycle where the condition is present.

0x03 Instruction MicroTLB miss.

0x04 Data MicroTLB miss.

0x05 Branch instruction executed, branch might or might not have changed program flow.
3-68 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
3.4.28 c15, Cycle Counter Register (CCNT)

The Cycle Counter Register counts the processor clock cycles. It is a 32-bit counter that
can trigger an interrupt on overflow. You can use it in conjunction with the Performance
Monitor Control Register and the two Counter Registers to provide a variety of useful
metrics that enable you to optimize system performance.

You can access the Cycle Counter Register by reading or writing CP15 c15 with the
Opcode_2 field set to 1:

0x06 Branch not predicted.

0x07 Branch mispredicted.

0x08 Instruction executed.

0x09 Folded instruction executed.

0x0A Data cache read access, not including cache operations. This event occurs for each non-sequential
access to a cache line.

0x0B Data cache read miss, not including cache operations.

0x0C Data cache write access.

0x0D Data cache write miss.

0x0E Data cache line eviction, not including cache operations.

0x0F Software changed the PC and there is not a mode change.

0x10 Main TLB miss.

0x11 External memory request (cache refill, noncachable, write-back).

0x12 Stall because of Load Store Unit request queue being full.

0x13 The number of times the Store buffer was drained because of LSU ordering constraints or CP15
operations.

0x14 Buffered write merged in a store buffer slot.

0xFF An increment each cycle.

All other values Reserved. Unpredictable behavior.

Table 3-41 Performance monitoring events (continued)

Event
number

Event definition
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-69
Unrestricted Access Non-Confidential

Control Coprocessor CP15
MRC p15, 0, <Rd>, c15, c12, 1 ; Read Cycle Counter Register
MCR p15, 0, <Rd>, c15, c12, 1 ; Write Cycle Counter Register

The value in the Cycle Counter Register is Unpredictable at Reset. The counter can be
set to zero by the Performance Monitor Control Register.

The Cycle Counter Register can be configured to count every 64th clock cycle by the
Performance Monitor Control Register.

3.4.29 c15, Count Register 0 (PMN0) and Count Register 1 (PMN1)

The two counter registers, Count Register 0 and Count Register 1, count the instances
of two different events selected from a list of events by the Performance Monitor
Control Register. Each counter is a 32-bit counter that can trigger an interrupt on
overflow. By combining different statistics you can obtain a variety of useful metrics
that enable you to optimize system performance.

You can access Count Register 0 by reading or writing CP15 c15 with the Opcode_2
field set to 2:

MRC p15, 0, <Rd>, c15, c12, 2 ; Read Count Register 0
MCR p15, 0, <Rd>, c15, c12, 2 ; Write Count Register 0

You can access Count Register 1 by reading or writing CP15 c15 with the Opcode_2
field set to 3:

MRC p15, 0, <Rd>, c15, c12, 3 ; Read Count Register 1
MCR p15, 0, <Rd>, c15, c12, 3 ; Write Count Register 1

The value in both Count Registers is 0 at Reset.

3.4.30 c15, TLB Debug Control Register

The debug architecture for the MP11 CPUs is described in Chapter 12 Debug. The
external debug interface is based on JTAG, and is described in Chapter 13 Debug Test
Access Port.

Table 3-42 shows the CP15 c15 operations used for the debug of the main TLB.

Table 3-42 Main TLB debug operations

Function Data Instruction

Read TLB Debug Control Register Data MRC p15, 7, <Rd>, c15, c1, 0

Write to TLB Debug Control Register Data MCR p15, 7, <Rd>, c15, c1, 0
3-70 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
TLB Debug Control Register

You can disable the loading of the main TLB after a hardware page table walk using the
TLB Debug Control Register in CP15 c15.

When the loading of the main TLB is disabled, misses that do not result in the main TLB
are updated. This has a significant impact on performance, but enables debug operations
to be performed in an unobtrusive manner as much as possible.

Figure 3-42 shows the format of the TLB Debug Control Register.

Figure 3-42 TLB Debug Control Register format

Table 3-43 shows the bit assignment of the TLB Debug Control Register.

Because the MP11 CPUs have a unified main TLB, the value of the IML field must be
set to the same value as the DML field, or else the effect is Unpredictable.

IML DML

SBZ

31 6 5 4 3 0

UNP/SBZ

Table 3-43 TLB Debug Control Register bit functions

Bits Reset value Field Function

[31:6] UNP/SBZ - Reserved

[5] 0 IML 1 = instruction main TLB load disabled

0 = instruction main TLB load enabled.

[4] 0 DML 1 = data main TLB load disabled

0 = data main TLB load enabled.

[3:0} UNP/SBZ - Reserved
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-71
Unrestricted Access Non-Confidential

Control Coprocessor CP15
3.4.31 c15, TLB lockdown operations

TLB lockdown operations permit saving or restoring lockdown entries in the TLB when
entering or exiting CPU dormant mode. Table 3-44 shows the defined TLB lockdown
operations.

The Select Lockdown TLB entry for read operation is used to select the source of the
data read by the read Lockdown TLB VA/PA attributes operations. The Select
Lockdown TLB entry for write operation is used to select in which entry the data write
Lockdown TLB VA/PA attributes data are written. The TLB PA register must be the last
written/read register when accessing TLB Lockdown Registers. Figure 3-43 shows the
format of the index register used to access the lockdown TLB entries.

Figure 3-43 Lockdown TLB index format

Figure 3-44 shows the format of the TLB VA Register.

Figure 3-44 TLB VA Register format

Table 3-44 TLB lockdown operations

Function Data Instruction

Select Lockdown TLB Entry for Read Main TLB Index MCR p15,5,<Rd>,c15,c4,2

Select Lockdown TLB Entry for Write Main TLB Index MCR p15,5,<Rd>,c15,c4,4

Read Lockdown TLB VA Register Data MRC p15,5,<Rd>,c15,c5,2

Write Lockdown TLB VA Register Data MCR p15,5,<Rd>,c15,c5,2

Read Lockdown TLB PA Register Data MRC p15,5,<Rd>,c15,c6,2

Write Lockdown TLB PA Register Data MCR p15,5,<Rd>,c15,c6,2

Read Lockdown TLB Attributes Register Data MRC p15,5,<Rd>,c15,c7,2

Write Lockdown TLB Attributes Register Data MCR p15,5,<Rd>,c15,c7,2

Index

31 3 2 0

SBZ

Process

31 12 11 10 9 0

VPN SBZ
3-72 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Table 3-45 shows the bit assignment of the TLB VA Register.

Figure 3-45 shows the format of the memory space identifier.

Figure 3-45 Memory space identifier format

Figure 3-46 shows the format of the TLB PA Register.

Figure 3-46 TLB PA Register format

Table 3-45 TLB VA Register bit functions

Bits Field Function

[31:12] VPN Virtual page number

[11:10] - Reserved (RAZ/SBZ)

[9:0] Process Memory space identifier that determines if the entry is a global mapping (Process = 0x200), or an
ASID dependant entry (Process = {b00, ASID})

9 8 7 0

1 SBZ

0

SBZ

ASID

Global entries

ASID entries

V

31 12 11 8 7 6 5 4 3 1 0

PPN SBZ SZ SBZ AP
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-73
Unrestricted Access Non-Confidential

Control Coprocessor CP15
Table 3-46 shows the bit assignment of the TLB PA Register.

Figure 3-47 shows the format of the TLB Attributes Register.

Figure 3-47 TLB Attributes Register format

Table 3-46 TLB PA Register bit functions

Bits Field Function

[31:12] PPN Physical page number.

Bits of the physical page number that are not translated as part of the page table translation are
Unpredictable when read and SBZ when written.

[11:8] - Reserved. SBZ/RAZ.

[7:6] SZ Region Size:

b01 = 4KB page

b10 = 64KB page

b11 = 1MB section

b00 = 16MB supersection.

All other values are reserved.

[5:4] - Reserved. SBZ/RAZ.

[3:1] AP Access permission:

b000 = all access generate a permission fault

b001 = Supervisor access only, User access generates a fault

b010 = Supervisor read/write access, User write access generates a fault

b011 = full access, no fault generated

b100 = reserved

b101 = Supervisor read only

b110 = Supervisor/User read only

b111 = Supervisor/User read only.

[0] V Valid bit.

Indicates that this entry is locked and valid.

S

31 30 29 28 27 26 25 24 11 10 7 6 5 3 2 1 0

AP3 AP2 AP1 SBZ Domain TEX CB

XNSPV
3-74 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
Table 3-47 shows the bit assignment of the TLB Attributes Register.

Table 3-48 shows the upper subpage permissions.

Table 3-47 TLB Attributes Register bit functions

Bits Field Function

[31:30] AP3 Subpage access permissions for the fourth subpage if the page or section supports subpages. The
format for the permissions is shown as the upper subpage permissions in Table 3-48.

[29:28] AP2 Subpage access permissions for the third subpage if the page or section supports subpages. The
format for the permissions is shown as the upper subpage permissions in Table 3-48.

[37:26] AP1 Subpage access permissions for the second subpage if the page or section supports subpages. The
format for the permissions is shown as the upper subpage permissions in Table 3-48.

[25] SPV Subpage valid. Indicates that the page or section supports subpages. Pages that support subpages
must be marked as Global:

0 = subpages are not supported

1 = subpages are supported.

[24:11] - SBZ.

[10:7] Domain Domain number of the TLB entry.

[6] XN Execute Never attribute.

[5:3] TEX Region type encoding.

See C and B bit, and type extension field encodings on page 5-16 for encoding descriptions.
[2:1] CB

[0] S Shared attribute.

Table 3-48 Upper subpage permissions

Upper subpage
permissions AP[1:0]

CP15
Description

S R

b00 0 0 All accesses generate a permission fault

b00 1 0 Supervisor read only, User no access

b00 0 1 Supervisor and User read-only

b00 1 1 Unpredictable
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-75
Unrestricted Access Non-Confidential

Control Coprocessor CP15
b01 X X Supervisor access only

b10 X X Supervisor full access, User read-only

b11 X X Full access

Table 3-48 Upper subpage permissions (continued)

Upper subpage
permissions AP[1:0]

CP15
Description

S R
3-76 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
3.5 Summary of CP15 instructions

Table 3-49 shows the CP15 instructions arranged numerically that you can use.

Table 3-49 CP15 instruction summary

Instruction Operation Reference

MRC p15, 0, <Rd>, c0, c0, 0

MRC p15, 0, <Rd>, c0, c0, 1

MRC p15, 0, <Rd>, c0, c0, 3

MRC p15, 0, <Rd>, c0, c0, 5

MRC p15, 0, <Rd>, c0, c0, 0

MRC p15, 0, <Rd>, c0, c1, 1

MRC p15, 0, <Rd>, c0, c1, 2

MRC p15, 0, <Rd>, c0, c1, 4

MRC p15, 0, <Rd>, c0, c1, 5

MRC p15, 0, <Rd>, c0, c1, 6

MRC p15, 0, <Rd>, c0, c1, 7

MRC p15, 0, <Rd>, c0, c2, 0

MRC p15, 0, <Rd>, c0, c2, 1

MRC p15, 0, <Rd>, c0, c2, 2

MRC p15, 0, <Rd>, c0, c2, 3

MRC p15, 0, <Rd>, c0, c2, 4

Read ID Code Register

Read Cache Type Register

Read TLB Type Register

Read CPU ID Register

Read Proc Feature Register 0

Read Proc Feature Register 1

Read Debug Feature Register 0

Read Memory Feature Register 0

Read Memory Feature Register 1

Read Memory Feature Register 2

Read Memory Feature Register 3

Read ISA Feature Register 0

Read ISA Feature Register 1

Read ISA Feature Register 2

Read ISA Feature Register 3

Read ISA Feature Register 4

page 3-11

page 3-11

page 3-13

page 3-14

page 3-15

page 3-15

page 3-15

page 3-15

page 3-15

page 3-15

page 3-15

page 3-22

page 3-22

page 3-22

page 3-22

page 3-22

MRC p15, 0, <Rd>, c1, c0, 0

MCR p15, 0, <Rd>, c1, c0, 0

MRC p15, 0, <Rd>, c1, c0, 1

MCR p15, 0, <Rd>, c1, c0, 1

MRC p15, 0, <Rd>, c1, c0, 2

MCR p15, 0, <Rd>, c1, c0, 2

Read Control Register

Write Control Register

Read Auxiliary Control Register

Write Auxiliary Control Register

Read Coprocessor Access Control Register

Write Coprocessor Access Control Register

page 3-28

page 3-28

page 3-33

page 3-33

page 3-35

page 3-35

MRC p15, 0, <Rd>, c2, c0, 0

MCR p15, 0, <Rd>, c2, c0, 0

MRC p15, 0, <Rd>, c2, c0, 1

MCR p15, 0, <Rd>, c2, c0, 1

MRC p15, 0, <Rd>, c2, c0, 2

MCR p15, 0, <Rd>, c2, c0, 2

Read Translation Table Base Register 0

Write Translation Table Base Register 0

Read Translation Table Base Register 1

Write Translation Table Base Register 1

Read Translation Table Base Control Register

Write Translation Table Base Control Register

page 3-36

page 3-36

page 3-38

page 3-38

page 3-39

page 3-39

MRC p15, 0, <Rd>, c3, c0, 0

MCR p15, 0, <Rd>, c3, c0, 0

Read Domain Access Control Register

Write Domain Access Control Register

page 3-40

page 3-40
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-77
Unrestricted Access Non-Confidential

Control Coprocessor CP15
MRC p15, 0, <Rd>, c5, c0, 0

MCR p15, 0, <Rd>, c5, c0, 0

MRC p15, 0, <Rd>, c5, c0, 1

MCR p15, 0, <Rd>, c5, c0, 1

Read Data Fault Status Register

Write Data Fault Status Register

Read Instruction Fault Status Register

Write Instruction Fault Status Register

page 3-41

page 3-41

page 3-43

page 3-43

MRC p15, 0, <Rd>, c6, c0, 0

MCR p15, 0, <Rd>, c6, c0, 0

MRC p15, 0, <Rd>, c6, c0, 1

MCR p15, 0, <Rd>, c6, c0, 1

Read Fault Address Register

Write Fault Address Register

Read Watchpoint Fault Address Register

Write Watchpoint Fault Address Register

page 3-44

page 3-44

page 3-44

page 3-44

MCR p15, 0, <Rd>, c7, c0, 4

MRC p15, 0, <Rd>, c7, c4, 0

MCR p15, 0, <Rd>, c7, c5, 0

MCR p15, 0, <Rd>, c7, c5, 1

MCR p15, 0, <Rd>, c7, c5, 2

MCR p15, 0, <Rd>, c7, c5, 4

MCR p15, 0, <Rd>, c7, c5, 6

MCR p15, 0, <Rd>, c7, c5, 7

MCR p15, 0, <Rd>, c7, c6, 0

MCR p15, 0, <Rd>, c7, c6, 1

MCR p15, 0, <Rd>, c7, c6, 2

MCR p15, 0, <Rd>, c7, c7, 0

MCR p15, 0, <Rn>, c7, c8, 0

MCR p15, 0, <Rn>, c7, c8, 1

MCR p15, 0, <Rn>, c7, c8, 2

MCR p15, 0, <Rn>, c7, c8, 3

MCR p15, 0, <Rd>, c7, c10, 0

MCR p15, 0, <Rd>, c7, c10, 1

MCR p15, 0, <Rd>, c7, c10, 2

MCR p15, 0, <Rd>, c7, c10, 4

MCR p15, 0, <Rd>, c7, c10, 5

MCR p15, 0, <Rd>, c7, c14, 0

MCR p15, 0, <Rd>, c7, c14, 1

MCR p15, 0, <Rd>, c7, c14, 2

Wait For Interrupt

PA Register

Invalidate Entire Instruction Cache Register

Invalidate Instruction Cache Line (using MVA) Register

Invalidate Instruction Cache Line (using Index) Register

Flush Prefetch Buffer Register

Flush Entire Branch Target Cache Register

Flush Branch Target Cache Entry Register

Invalidate Entire Data Cache Register

Invalidate Data Cache Line (using MVA) Register

Invalidate Data Cache Line (using Index) Register

Invalidate Both Caches Register

VA to PA with privileged read permission check Register

VA to PA with privileged write permission check Register

VA to PA with user read permission check Register

VA to PA with user write permission check Register

Clean Entire Data Cache Register

Clean Data Cache Line (using MVA) Register

Clean Data Cache Line (using Index) Register

Data Synchronization Barrier Register

Data Memory Barrier Register

Clean and Invalidate Entire Data Cache Register

Clean and Invalidate Data Cache Line (using MVA) Register

Clean and Invalidate Data Cache Line (using Index) Register

page 3-47

page 3-52

page 3-51

page 3-47

page 3-47

page 3-47

page 3-47

page 3-47

page 3-47

page 3-47

page 3-47

page 3-47

page 3-47

page 3-51

page 3-51

page 3-51

page 3-51

page 3-51

page 3-51

page 3-47

page 3-47

page 3-47

page 3-47

page 3-47

page 3-51

page 3-51

page 3-51

Table 3-49 CP15 instruction summary (continued)

Instruction Operation Reference
3-78 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Control Coprocessor CP15
MCR p15,0, <Rd>, c8, C5, 0

MCR p15,0, <Rd>, c8, C5, 1

MCR p15,0, <Rd>, c8, C5, 2

MCR p15,0, <Rd>, c8, C5, 3

MCR p15,0, <Rd>, c8, C6, 0

MCR p15,0, <Rd>, c8, C6, 1

MCR p15,0, <Rd>, c8, C6, 2

MCR p15,0, <Rd>, c8, C6, 3

MCR p15,0, <Rd>, c8, C7, 0

MCR p15,0, <Rd>, c8, C7, 1

MCR p15,0, <Rd>, c8, C7, 2

MCR p15,0, <Rd>, c8, C7, 3

Invalidate Instruction TLB Register

Invalidate Instruction TLB Single Entry Register

Invalidate Instruction TLB Entry on ASID match Register

Invalidate Instruction TLB Single Entry on MVA only Register

Invalidate Data TLB Register

Invalidate Data TLB Single Entry Register

Invalidate Data TLB Entry on ASID match Register

Invalidate Data TLB Single Entry on MVA only Register

Invalidate Unified TLB Register

Invalidate Unified TLB Single Entry Register

Invalidate Unified TLB Entry on ASID match Register

Invalidate Unified TLB Single Entry on MVA only Register

page 3-53

MRC p15, 0, <Rd>, c9, c0, 0

MCR p15, 0, <Rd>, c9, c0, 0

Read Data Cache Lockdown Register

Write Data Cache Lockdown Register

page 3-56

page 3-56

MRC p15, 0, <Rd>, c10, c0, 0

MCR p15, 0, <Rd>, c10, c0, 0

MRC p15, 0, <Rd>, c10, c2, 0

MCR p15, 0, <Rd>, c10, c2, 0

MRC p15, 0, <Rd>, c10, c2, 1

MCR p15, 0, <Rd>, c10, c2, 1

Read TLB Lockdown Register

Write TLB Lockdown Register

Read Primary Remap Register

Write Primary Remap Register

Read Normal Remap Register

Write Normal Remap Register

page 3-59

MRC p15, 0, <Rd>, c13, c0, 0

MCR p15, 0, <Rd>, c13, c0, 0

MRC p15, 0, <Rd>, c13, c0, 1

MCR p15, 0, <Rd>, c13, c0, 1

MRC p15, 0, <Rd>, c13, c0, 2

MCR p15, 0, <Rd>, c13, c0, 2

MRC p15, 0, <Rd>, c13, c0, 3

MCR p15, 0, <Rd>, c13, c0, 3

MRC p15, 0, <Rd>, c13, c0, 4

MCR p15, 0, <Rd>, c13, c0, 4

Read Process ID Register

Write Process ID Register

Read Context ID Register

Write Context ID Register

Read Thread ID User and Privileged Read Write Register

Write Thread ID User and Privileged Read Write Register

Read Thread ID User Read only Register

Write Thread ID User Read only Register

Read Thread ID Privileged Read Write only Register

Write Thread ID Privileged Read Write only Register

page 3-62

page 3-62

page 3-64

page 3-64

Table 3-49 CP15 instruction summary (continued)

Instruction Operation Reference
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 3-79
Unrestricted Access Non-Confidential

Control Coprocessor CP15
MRC p15, 0, <Rd>, c15, c12, 0

MCR p15, 0, <Rd>, c15, c12, 0

MRC p15, 0, <Rd>, c15, c12, 1

MCR p15, 0, <Rd>, c15, c12, 1

MRC p15, 0, <Rd>, c15, c12, 2

MCR p15, 0, <Rd>, c15, c12, 2

MRC p15, 0, <Rd>, c15, c12, 3

MCR p15, 0, <Rd>, c15, c12, 3

Read Performance Monitor Control Register

Write Performance Monitor Control Register

Read Cycle Counter Register

Write Cycle Counter Register

Read Count Register 0

Write Count Register 0

Read Count Register 1

Write Count Register 1

page 3-66

page 3-66

page 3-69

page 3-69

page 3-70

page 3-70

page 3-70

page 3-70

MCR p15, 5, <Rd>, c15, c4, 2

MCR p15, 5, <Rd>, c15, c4, 4

MRC p15, 5, <Rd>, c15, c5, 2

MCR p15, 5, <Rd>, c15, c5, 2

MRC p15, 5, <Rd>, c15, c6, 2

MCR p15, 5, <Rd>, c15, c6, 2

MRC p15, 5, <Rd>, c15, c7, 2

MCR p15, 5, <Rd>, c15, c7, 2

Read Main TLB Entry Register

Write Main TLB Entry Register

Read Main TLB VA Register

Write Main TLB VA Register

Read Main TLB PA Register

Write Main TLB PA Register

Read Main TLB Attribute Register

Write Main TLB Attribute Register

page 3-70

MRC p15, 7, <Rd>, c15, c1, 0

MCR p15, 7, <Rd>, c15, c1, 0

Read TLB Debug Control Register

Write TLB Debug Control Register

page 3-70

Table 3-49 CP15 instruction summary (continued)

Instruction Operation Reference
3-80 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 4
Unaligned and Mixed-Endian Data Access
Support

This chapter describes the unaligned and mixed-endianness data access support for
MP11 CPUs. It contains the following sections:

• About unaligned and mixed-endian support on page 4-2

• Unaligned access support on page 4-3

• Unaligned data access specification on page 4-7

• Operation of unaligned accesses on page 4-18

• Mixed-endian access support on page 4-22

• Instructions to reverse bytes in a general-purpose register on page 4-25

• Instructions to change the CPSR E bit on page 4-26.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 4-1
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
4.1 About unaligned and mixed-endian support

MP11 CPUs execute the ARM architecture v6 instructions that support mixed-endian
access in hardware, and assist unaligned data accesses. The extensions to ARMv6 that
support unaligned and mixed-endian accesses include the following:

• CP15 register c1 has a U bit that enables unaligned support. This bit was specified
as zero in previous architectures, and resets to zero for backwards compatibility.

• Architecturally defined unaligned word and halfword access specification for
hardware implementation.

• Byte-reverse instructions that operate on general-purpose register contents to
support signed and unsigned halfword data values.

• Separate instruction and data endianness, with instructions fixed as little-endian
format, naturally aligned.

• A PSR endian control flag, the E-bit, cleared on reset and exception entry, that
adds a byte-reverse operation to the entire load and store instruction space as data
is loaded into and stored back out of the register file. In previous architectures this
Program Status Register bit was specified as zero. It is not set in code written to
conform to architectures prior to ARMv6.

• ARM and Thumb instructions to set and clear the E-bit explicitly.

• A byte-invariant addressing scheme to support fine-grain big-endian and
little-endian shared data structures, to conform to a shared memory standard.

The original ARM architecture was designed as little-endian. This provides a consistent
address ordering of bits, bytes, words, cache lines, and pages, and is assumed by the
documentation of instruction set encoding and memory and register bit significance.
Subsequently, big-endian support was added to enable big-endian byte addressing of
memory. A little-endian nomenclature is used for bit-ordering and byte addressing
throughout this manual.

Within the processor, MP11 CPUs can be set to different endianness.
4-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
4.2 Unaligned access support

Instructions must always be aligned as follows:

• ARM 32-bit instructions must be word boundary aligned (Address [1:0] = b00)

• Thumb 16-bit instructions must be halfword boundary aligned (Address [0] = 0).

The following sections describe unaligned data access support:

• Word-invariant mode support

• ARMv6 extensions

• Word-invariant mode and ARMv6 configurations on page 4-4

• Word-invariant data access in ARMv6 (U=0) on page 4-4

• Support for unaligned data access in ARMv6 (U=1) on page 4-5

• ARMv6 unaligned data access restrictions on page 4-5.

4.2.1 Word-invariant mode support

For ARM architectures prior to ARM architecture v6, data access to non-aligned word
and halfword data was treated as aligned from the memory interface perspective. That
is, the address is treated as truncated with Address[1:0] treated as zero for word
accesses, and Address[0] treated as zero for halfword accesses.

Load single word ARM instructions are also architecturally defined to rotate right the
word aligned data transferred by a non word-aligned access, see the ARM Architecture
Reference Manual.

Alignment fault checking is specified for processors with architecturally compliant
Memory Management Units (MMUs), under control of CP15 Register c1 A bit, bit [1].
When a transfer is not naturally aligned to the size of data transferred a Data Abort is
signaled with an Alignment fault status code, see the ARM Architecture Reference
Manual for more details.

4.2.2 ARMv6 extensions

ARMv6 adds unaligned word and halfword load and store data access support. When
enabled, one or more memory accesses are used to generate the required transfer of
adjacent bytes transparently, apart from a potentially greater access time where the
transaction crosses a word-boundary.

The memory management specification defines a programmable mechanism to enable
unaligned access support. This is controlled and programmed using the CP15 register
c1 U bit, bit 22.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 4-3
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
Non word-aligned load and store multiple, double, semaphore, synchronization, and
coprocessor accesses always signal Data Abort with an Alignment fault status code
when the U bit is set.

Strict alignment checking is also supported in ARMv6, under control of the CP15
register c1 A bit, [bit 1], and signals a Data Abort with an Alignment fault status code
if a 16-bit access is not halfword aligned or a single 32-bit load/store transfer is not word
aligned.

ARMv6 alignment fault detection is a mandatory function associated with address
generation rather than optionally supported in external memory management hardware.

4.2.3 Word-invariant mode and ARMv6 configurations

Table 4-1 summarizes the unaligned access handling.

For a description of the options available, see c1, Control Register on page 3-28.

4.2.4 Word-invariant data access in ARMv6 (U=0)

MP11 CPUs emulate earlier architecture unaligned accesses to memory as follows:

• If the A bit is asserted alignment faults occur for:

Halfword access Address[0] is 1.

Word access Address[1:0] is not b00.

LDRD or STRD Address [2:0] is not b000.

Multiple access Address [1:0] is not b00.

Table 4-1 Unaligned access handling

CP15 register c1 CP15 register c1 Unaligned access model

U bit A bit

0 0 Word-invariant ARMv5. See Word-invariant data
access in ARMv6 (U=0).

0 1 Word-invariant natural alignment check.

1 0 ARMv6 unaligned half/word access, else strict
word alignment check.

1 1 ARMv6 strict half/word alignment check.
4-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
• If alignment faults are enabled and the access is not aligned then the Data Abort
vector is entered with an Alignment fault status code.

• If no alignment fault is enabled, that is, if bit [1] of CP15 register c1, the A bit, is
not set:

Byte access Memory interface uses full Address [31:0].

Halfword access Memory interface uses Address [31:1]. Address [0] asserted
as 0.

Word access Memory interface uses Address [31:2]. Address [1:0]
asserted as 0.

— ARM load data rotates the aligned read data and rotates this right by the
byte-offset denoted by Address [1:0], see the ARM Architecture Reference
Manual.

— ARM and Thumb load-multiple accesses always treated as aligned. No
rotation of read data.

— ARM and Thumb store word and store multiple treated as aligned. No
rotation of write data.

— ARM load and store doubleword operations treated as 64-bit aligned.

— Thumb load word data operations are Unpredictable if not word aligned.

— ARM and Thumb halfword data accesses are Unpredictable if not halfword
aligned.

4.2.5 Support for unaligned data access in ARMv6 (U=1)

The MP11 CPU memory interfaces can generate unaligned low order byte address
offsets only for halfword and single word load and store operations, and for byte
accesses unless the A bit is set. These accesses produce an alignment fault if the A bit
is set, and for some of the cases described in ARMv6 unaligned data access restrictions.

If alignment faults are enabled and the access is not aligned then the Data Abort vector
is entered with an Alignment Fault status code.

4.2.6 ARMv6 unaligned data access restrictions

The following restrictions apply for ARMv6 unaligned data access:

• Accesses are not guaranteed atomic. They might be synthesized out of a series of
aligned operations in a shared memory system without guaranteeing locked
transaction cycles.

• Unaligned accesses loading the PC produce an alignment trap.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 4-5
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
• Accesses typically take a number of cycles to complete compared to a naturally
aligned transfer. The real-time implications must be carefully analyzed and key
data structures might require to have their alignment adjusted for optimum
performance.

• Accesses can abort on either or both halves of an access where this occurs over a
page boundary. The Data Abort handler must handle restartable aborts carefully
after an Alignment fault status code is signaled.

As a result, shared memory schemes must not rely on seeing updates of non-aligned
data of loads, stores, and swaps for data items greater than byte width.

Unaligned access operations must not be used for accessing Device memory-mapped
registers, and must be used with care in Shared memory structures that are protected by
aligned semaphores or synchronization variables.

An alignment fault occurs if unaligned accesses to Strongly Ordered or Device memory
are attempted.

Swap and synchronization primitives, multiple-word or coprocessor access produce an
alignment fault regardless of the setting of the A bit.
4-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
4.3 Unaligned data access specification

The architectural specification of unaligned data representations is defined in terms of
bytes transferred between memory and register, regardless of bus width and bus
endianness.

Little-endian data items are described using lower-case byte labeling bX..b0 (byteX to
byte0) and a pointer is always treated as pointing to the least significant byte of the
addressed data.

Big-endian data items are described using upper-case byte labeling B0..BX (BYTE0 to
BYTEX) and a pointer is always treated as pointing to the most significant byte of the
addressed data.

4.3.1 Load unsigned byte, endian independent

The addressed byte is loaded from memory into the low eight bits of the
general-purpose register and the upper 24 bits are zeroed. Figure 4-1 shows this.

Figure 4-1 Load unsigned byte

4.3.2 Load signed byte, endian independent

The addressed byte is loaded from the memory into the low eight bits of the
general-purpose register and the sign bit is extended into the upper 24 bits of the
register. Figure 4-2 on page 4-8 shows this.

b

Memory Register

31 23 15 7 0

Address

A[31:0]

7 0

0 0 0 b
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 4-7
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
Figure 4-2 Load signed byte

In Figure 4-2, se means b (bit 7) sign extension.

4.3.3 Store byte, endian independent

The low eight bits of the general-purpose register are stored into the addressed byte in
memory. Figure 4-3 shows this.

Figure 4-3 Store byte

4.3.4 Load unsigned halfword, little-endian

The addressed byte-pair is loaded from memory into the low 16 bits of the
general-purpose register, and the upper 16 bits are zeroed so that the least-significant
addressed byte in memory appears in bits [7:0] of the ARM register. Figure 4-4 on
page 4-9 shows this.

b

Memory Register

31 23 15 7 0

Address

A[31:0]

7 0

se se se b

Register

31 23 15 7 0

x x x b b

Memory

Address

A[31:0]

7 0
4-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
Figure 4-4 Load unsigned halfword, little-endian

If strict alignment fault checking is enabled and Address bit 0 is not zero, then a Data
Abort is generated and the MMU returns an Alignment fault in the Fault Status Register.

4.3.5 Load unsigned halfword, big-endian

The addressed byte-pair is loaded from memory into the low 16 bits of the
general-purpose register, and the upper 16 bits are zeroed so that the most-significant
addressed byte in memory appears in bits [15:8] of the ARM register. Figure 4-5 shows
this.

Figure 4-5 Load unsigned halfword, big-endian

If strict alignment fault checking is enabled and Address bit 0 is not zero, then a Data
Abort is generated and the MMU returns an Alignment fault in the Fault Status Register.

b1

b0

Memory Register

31 23 15 7 0

Address

A[31:0]

7 0

0 0 b1 b0

+1 msbyte

lsbyte

B1

B0

Memory Register

31 23 15 7 0

Address

A[31:0]

7 0

0 0 B0 B1

+1 lsbyte

msbyte
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 4-9
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
4.3.6 Load signed halfword, little-endian

The addressed byte-pair is loaded from memory into the low 16 bits of the
general-purpose register, so that the least-significant addressed byte in memory appears
in bits [7:0] of the ARM register and the upper 16 bits are sign-extended from bit [15].
Figure 4-6 shows this.

Figure 4-6 Load signed halfword, little-endian

In Figure 4-6, se1 means bit [15] (b1 bit [7]) sign extended.

If strict alignment fault checking is enabled and Address bit 0 is not zero, then a Data
Abort is generated and the MMU returns an Alignment fault in the Fault Status Register.

4.3.7 Load signed halfword, big-endian

The addressed byte-pair is loaded from memory into the low 16 bits of the
general-purpose register, so that the most significant addressed byte in memory appears
in bits [15:8] of the ARM register and bits [31:16] replicate the sign bit in bit [15].
Figure 4-7 on page 4-11 shows this.

b1

b0

Memory Register

31 23 15 7 0

Address

A[31:0]

7 0

se1 se1 b1 b0

+1 msbyte

lsbyte
4-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
Figure 4-7 Load signed halfword, big-endian

In Figure 4-7, SE0 means bit [15] (B0 bit [7]) sign extended.

If strict alignment fault checking is enabled and Address bit 0 is not zero, then a Data
Abort is generated and the MMU returns an Alignment fault in the Fault Status Register.

4.3.8 Store halfword, little-endian

The low 16 bits of the general-purpose register are stored into the memory with bits
[7:0] written to the addressed byte in memory, and bits [15:8] to the incremental byte
address in memory. Figure 4-8 shows this.

Figure 4-8 Store halfword, little-endian

If strict alignment fault checking is enabled and Address bit [0] is not zero, then a Data
Abort is generated and the MMU returns an Alignment fault in the Fault Status Register.

B1

B0

Memory Register

31 23 15 7 0

Address

A[31:0]

7 0

SE0 SE0 B0 B1

+1 lsbyte

msbyte

Register

31 23 15 7 0

x x b1 b0

b1

b0

Memory

Address

A[31:0]

7 0

+1 msbyte

lsbyte
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 4-11
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
4.3.9 Store halfword, big-endian

The low 16 bits of the general-purpose register are stored into the memory with bits
[15:8] written to the addressed byte in memory, and bits [7:0] to the incremental byte
address in memory. Figure 4-9 shows this.

Figure 4-9 Store halfword, big-endian

If strict alignment fault checking is enabled and Address bits [1:0] is not zero, then a
Data Abort is generated and the MMU returns an Alignment fault in the Fault Status
Register.

4.3.10 Load word, little-endian

The addressed byte-quad is loaded from memory into the 32-bit general-purpose
register so that the least-significant addressed byte in memory appears in bits [7:0] of
the ARM register. Figure 4-10 on page 4-13 shows this.

Register

31 23 15 7 0

x x B0 B1

B1

B0

Memory

Address

A[31:0]

7 0

+1 lsbyte

msbyte
4-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
Figure 4-10 Load word, little-endian

If strict alignment fault checking is enabled and Address bits [1:0] is not zero, then a
Data Abort is generated and the MMU returns an Alignment fault in the Fault Status
Register.

4.3.11 Load word, big-endian

The addressed byte-quad is loaded from memory into the 32-bit general-purpose
register so that the most significant addressed byte in memory appears in bits [31:24] of
the ARM register. Figure 4-11 on page 4-14 shows this.

b1

b0

Memory Register

31 23 15 7 0

Address

A[31:0]

7 0

b3 b2 b1 b0

b2

+1

msbyte

lsbyte

b3

+2

+3
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 4-13
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
Figure 4-11 Load word, big-endian

If strict alignment fault checking is enabled and Address bits [1:0] is not zero, then a
Data Abort is generated and the MMU returns an Alignment fault in the Fault Status
Register.

4.3.12 Store word, little-endian

The 32-bit general-purpose register is stored to four bytes in memory where bits [7:0]
of the ARM register are transferred to the least-significant addressed byte in memory.
Figure 4-12 on page 4-15 shows this.

B1

B0

Memory Register

31 23 15 7 0

Address

A[31:0]

7 0

B0 B1 B2 B3

B2

+1

lsbyte

msbyte

B3

+2

+3
4-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
Figure 4-12 Store word, little-endian

If strict alignment fault checking is enabled and Address bits [1:0] are not zero, then a
Data Abort is generated and the MMU returns an Alignment fault in the Fault Status
Register.

4.3.13 Store word, big-endian

The 32-bit general-purpose register is stored to four bytes in memory where bits [31:24]
of the ARM register are transferred to the most-significant addressed byte in memory.
Figure 4-13 on page 4-16 show this.

Register

31 23 15 7 0

b3 b2 b1 b0

b1

b0

Memory

Address

A[31:0]

7 0

b2

+1

msbyte

lsbyte

b3

+2

+3
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 4-15
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
Figure 4-13 Store word, big-endian

If strict alignment fault checking is enabled and Address bits [1:0] are not zero, then a
Data Abort is generated and the MMU returns an Alignment fault in the Fault Status
Register.

4.3.14 Load double, load multiple, load coprocessor (little-endian, E = 0)

The access is treated as a series of incrementing aligned word loads from memory. The
data is treated as load word data (see Load word, little-endian on page 4-13) where the
lowest two address bits are zeroed.

If strict alignment fault checking is enabled and effective Address bits [1:0] are not zero,
then a Data Abort is generated and the MMU returns an Alignment fault in the Fault
Status Register.

4.3.15 Load double, load multiple, load coprocessor (big-endian, E=1)

The access is treated as a series of incrementing aligned word loads from memory. The
data is treated as load word data (see Load word, big-endian on page 4-14) where the
lowest two address bits are zeroed.

If strict alignment fault checking is enabled and effective Address bits [1:0] are not zero,
then a Data Abort is generated and the MMU returns an Alignment fault in the Fault
Status Register.

Register

31 23 15 7 0

B0 B1 B2 B3

B1

B0

Memory

Address

A[31:0]

7 0

B2

+1

lsbyte

msbyte

B3

+2

+3
4-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
4.3.16 Store double, store multiple, store coprocessor (little-endian, E=0)

The access is treated as a series of incrementing aligned word stores to memory. The
data is treated as store word data (see Store word, little-endian on page 4-15) where the
lowest two address bits are zeroed.

If strict alignment fault checking is enabled and effective Address bits [1:0] are not zero,
then a Data Abort is generated and the MMU returns an Alignment fault in the Fault
Status Register.

4.3.17 Store double, store multiple, store coprocessor (big-endian, E=1)

The access is treated as a series of incrementing aligned word stores to memory. The
data is treated as store word data (see Store word, big-endian on page 4-16) where the
lowest two address bits are zeroed.

If strict alignment fault checking is enabled and effective Address bits [1:0] are not zero,
then a Data Abort is generated and the MMU returns an Alignment fault in the Fault
Status Register.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 4-17
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
4.4 Operation of unaligned accesses

This section describes alignment faults and the operation of non-faulting accesses of the
MP11 CPUs.

Table 4-3 on page 4-19 lists when an alignment fault must occur for an access and when
the behavior of an access is architecturally Unpredictable. When an access does not
generate an alignment fault and is not Unpredictable, the table also provides memory
locations that are accessed.

The access type descriptions used in the Table 4-3 on page 4-19 are determined from
the load/store instructions given in Table 4-2.

The following terminology describes the memory locations accessed:

Byte[X] This means the byte whose address is X in the current endianness model.
The correspondence between the endianness models is that Byte[A] in
the LE endianness model is Byte[A] in the BE-8 endianness model.

Halfword[X] This means the halfword consisting of the bytes whose addresses are X
and X+1 in the current endianness model, combined to form a halfword
in little-endian order in the LE endianness model or in big-endian order
in the BE-8 endianness model.

Table 4-2 Memory access type descriptions

Access type ARM instructions Thumb instructions

Byte LDRB, LDRBT, LDRSB, STRB, STRBT LDRB, LDRSB, STRB

BSync SWPB, LDREXB, STREXB -

Halfword LDRH, LDRSH, STRH LDRH, LDRSH, STRH

HWSync LDREXH, STREXH -

WLoad LDR, LDRT, SWP (load access, if U is set to 0) LDR

WStore STR, STRT, SWP (store access, if U is set to 0) STR

WSync LDREX, STREX, SWP (either access, if U is set to 1) -

Two-word LDRD, STRD -

Multi-word LDC, LDM, RFE, SRS, STC, STM LDMIA, POP, PUSH, STMIA

DWSync LDREXD, STREXD -
4-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
Word[X] This means the word consisting of the bytes whose addresses are X, X+1,
X+2, and X+3 in the current endianness model, combined to form a word
in little-endian order in the LE endianness model or in big-endian order
in the BE-8 endianness model.

Align(X) This means X AND 0xFFFFFFFC. That is, X with its least significant two
bits forced to zero to make it word-aligned.

There is no difference between Addr and Align(Addr) on lines where
Addr[1:0] is set to b00. You can use this to simplify the control of when
the least significant bits are forced to zero.

For the two-word and multi-word access types, the memory accessed column only
specifies the lowest word accessed. Subsequent words have addresses constructed by
successively incrementing the address of the lowest word by four, and are constructed
using the same endianness model as the lowest word.

Table 4-3 Unalignment fault occurrence
when access behavior is architecturally unpredictable

A U Addr[2:0]
Access
types

Architectural
Behavior

Memory accessed Note

0 0 - - - - Legacy, no alignment

0 0 bxxx Byte, BSync Normal Byte[Addr]

0 0 bxx0 Halfword Normal Halfword[Addr]

0 0 bxx1 Halfword Unpredictable -

0 0 bxx0 HWSync Normal Halfword[Addr]

0 0 bxx1 HWSync Unpredictable -

0 0 bxxx Wload Normal Word[Align32(Addr)] Loaded data rotated by
8*Addr[1:0] bits

0 0 bxxx WStore Normal Word[Align32(Addr)] Operation unaffected by
Addr[1:0]

0 0 bx00 WSync Normal Word[Addr]

0 0 bxx1, bx1x WSync Unpredictable -

0 0 bxxx Multi-word Normal Word[Align32(Addr)] Operation unaffected by
Addr[1:0]

0 0 b000 Two-word Normal Word[Addr]
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 4-19
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
0 0 bxx1,
bx1x, b1xx

Two-word Unpredictable -

0 0 b000 DWSync Normal Word[Addr]

0 0 bxx1,
bx1x,
b1xx

DWSync Unpredictable -

0 1 - - - - ARMv6 unaligned supporta

0 1 bxxx Byte, BSync Normal Byte[Addr]

0 1 bxxx Halfword Normal Halfword[Addr]

0 1 bxx0 HWSync Normal Halfword[Addr]

0 1 bxx1 HWSync Alignment fault

0 1 bxxx Wload,
WStore

Normal Word[Addr]

0 1 bx00 WSync,
Multi-word,
Two-word

Normal Word[Addr]

0 1 bxx1, bx1x WSync,
Multi-word,
Two-word

Alignment fault - -

0 1 b000 DWSync Normal Word[Addr]

0 1 bxx1,
bx1x, b1xx

DWSync Alignment fault -

1 x - - - - Full alignment faulting

1 x bxxx Byte, BSync Normal Byte[Addr]

1 x bxx0 Halfword,
HWSync

Normal Halfword[Addr]

1 x bxx1 Halfword,
HWSync

Alignment fault -

Table 4-3 Unalignment fault occurrence
when access behavior is architecturally unpredictable (continued)

A U Addr[2:0]
Access
types

Architectural
Behavior

Memory accessed Note
4-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
The following causes override the behavior specified in Table 4-3 on page 4-19:

• An LDR instruction that loads the PC, has Addr[1:0] != b00, and is specified in the
table as having Normal behavior instead has Unpredictable behavior.

The reason this applies only to LDR is that most other load instructions are
Unpredictable regardless of alignment if the PC is specified as their destination
register.

The exceptions are the ARM LDM and RFE instructions, and the Thumb POP
instruction. If the instruction for them is Addr[1:0] != b00, the effective address
of the transfer has its two least significant bits forced to 0 if A and U are both set
to 0. Otherwise the behavior specified in Unalignment fault occurrence when
access behavior is architecturally unpredictable on page 4-19 is either
Unpredictable or an Alignment fault regardless of the destination register.

1 x bx00 WLoad,
WStore,
WSync,
Multi-word

Normal Word[Addr]

1 x bxx1, bx1x WLoad,
WStore,
WSync,
Multi-word

Alignment fault -

1 x b000 Two-word Normal Word[Addr]

1 0 b100 Two-word Alignment fault -

1 1 b100 Two-word Normal Word[Addr]

1 x bxx1, bx1x Two-word Alignment fault -

1 x b000 DWSync Normal Word[Addr]

1 x bxx1,
bx1x, b1xx

DWSync Alignment fault -

a. Alignment faults occur when unaligned accesses to Strongly Ordered or Device memory are attempted.

Table 4-3 Unalignment fault occurrence
when access behavior is architecturally unpredictable (continued)

A U Addr[2:0]
Access
types

Architectural
Behavior

Memory accessed Note
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 4-21
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
4.5 Mixed-endian access support

This section describes mixed-endian data access in:

• ARMv6 support for mixed-endian data

• Instructions to change the CPSR E bit on page 4-26.

4.5.1 ARMv6 support for mixed-endian data

Prior to ARMv6 the endianness of both instructions and data are locked together, and
the configuration of the processor and the external memory system must either be
hard-wired or programmed in the first few instructions of the bootstrap code. In ARMv6
the instruction and data endianness are separated:

• instructions are fixed little-endian

• data accesses can be either little-endian or big-endian as controlled by bit [9], the
E bit, of the Program Status Register.

The value of the E bit on any exception entry, including reset, is determined by the CP15
Control Register EE bit.

Fixed little-endian Instructions

Instructions must be naturally aligned and are always treated as being stored in memory
in little-endian format. That is, the PC points to the least-significant-byte of the
instruction.

Instructions must be treated as data by exception handlers, for example, decoding SWI
calls and Undefined instructions.

Instructions can also be written as data by debuggers, Just-In-Time compilers, or in
operating systems that update exception vectors.

Mixed-endian data access

The operating system typically has a required endian representation of internal data
structures, but applications and device drivers must work with data shared and with
other processors such as DSP or DMA interfaces, that might have fixed big-endian or
little-endian data formatting.

A byte-invariant addressing mechanism is provided that enables the load/store
architecture to be qualified by the CPSR E bit. This provides byte reversing of
big-endian data in to, and out of, the processor register bank transparently. This
byte-invariant big-endian representation is called BE-8 in this document.
4-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
The effect on byte, halfword, word, and multi-word accesses of setting the CPSR E bit
when the U bit enables unaligned support is described in Mixed-endian configuration
support on page 4-24.

Byte data access

The same physical byte in memory is accessed whether big-endian or little-endian:

• unsigned byte load as described in Load unsigned byte, endian independent on
page 4-7

• signed byte load as described in Load signed byte, endian independent on
page 4-7

• byte store as described in Store byte, endian independent on page 4-8.

Halfword data access

The same two physical bytes in memory are accessed whether big-endian or
little-endian. Big-endian halfword load data is byte-reversed as read into the processor
register to ensure little-endian internal representation, and similarly is byte-reversed on
store to memory:

• unsigned halfword load as described in Load unsigned halfword, little-endian on
page 4-8 (LE), and Load unsigned halfword, big-endian on page 4-9 (BE-8)

• signed halfword load as described in Load signed halfword, little-endian on
page 4-10 (LE), and Load signed halfword, big-endian on page 4-10 (BE-8)

• halfword store as described in Store halfword, little-endian on page 4-11 (LE),
and Store halfword, big-endian on page 4-12 (BE-8).

Load Word

The same four physical bytes in memory are accessed whether big-endian or
little-endian. Big-endian word load data is byte reversed as read into the processor
register to ensure little-endian internal representation, and similarly is byte-reversed on
store to memory:

• word load as described in Load word, little-endian on page 4-12 (LE), and Load
word, big-endian on page 4-13 (BE-8)

• word store as described in Store word, little-endian on page 4-14 (LE), and Store
word, big-endian on page 4-15 (BE-8).
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 4-23
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
Mixed-endian configuration support

This behavior is enabled when the U bit in CP15 Register c1 is set. Table 4-4 shows the
mixed-endian configurations.

4.5.2 Reset values of the EE, U, and E bits

The reset values of the EE, U, and E and bits are determined by CFGEND[1:0].
Table 4-5 shows this.

Table 4-4 Mixed-endian configuration

U E
Instruction
endianness

Data
endianness

Description

1 0 LE LE LE instructions, LE data load/store

1 1 LE BE-8 LE instructions, BE data load/store

Table 4-5 EE bit, U bit, and E bit settings

CFGEND[1:0]
CP15 control register CPSR and SPSR

EE U E

00 0 0 0

01 Reserved - - -

10 0 1 0

11 1 1 1
4-24 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
4.6 Instructions to reverse bytes in a general-purpose register

When an application or device driver must interface with memory-mapped peripheral
registers or shared-memory DMA structures that are not the same endianness, an
efficient way to explicitly transform the endianness of the data is required.

The following instructions in the ARM and Thumb instruction sets provide this
functionality:

• reverse word (4 bytes) register, for transforming big and little-endian 32-bit
representations

• reverse halfword and sign-extend, for transforming signed 16-bit representations

• reverse packed halfwords in a register for transforming big-endian and
little-endian 16-bit representations.

4.6.1 All load and store operations

All load and store instructions take account of the CPSR E bit. Data is transferred
directly to registers when E = 0, and byte reversed if E = 1 for halfword, word, or
multiple word transfers.

Operation:

When CPSR[<E-bit>] = 1 then byte reverse load/store data
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 4-25
Non-Confidential

Unaligned and Mixed-Endian Data Access Support
4.7 Instructions to change the CPSR E bit

ARM and Thumb instructions are provided to set and clear the E-bit efficiently:

SETEND BE Sets the CPSR E bit

SETEND LE Resets the CPSR E bit.

These are specified as unconditional operations to minimize pipelined implementation
complexity.
4-26 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential

Chapter 5
Memory Management Unit

This chapter describes the Memory Management Unit (MMU) and how it is used. It
contains the following sections:

• About the MMU on page 5-2

• TLB organization on page 5-4

• Memory access sequence on page 5-7

• Enabling and disabling the MMU on page 5-9

• Memory access control on page 5-11

• Memory region attributes on page 5-16

• Memory attributes and types on page 5-21

• MMU aborts on page 5-31

• MMU fault checking on page 5-33

• Fault status and address on page 5-38

• Hardware page table translation on page 5-40

• MMU descriptors on page 5-48

• MMU software-accessible registers on page 5-59

• MMU and Write Buffer on page 5-64.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-1
Unrestricted Access Non-Confidential

Memory Management Unit
5.1 About the MMU

Each MP11 CPU MMU works with the cache memory system to control accesses to and
from external memory. The MMU also controls the translation of Virtual Addresses to
physical addresses.

The processor implements an ARMv6 MMU to provide address translation and access
permission checks for the instruction and data ports of the MP11 CPUs. The MMU
controls table-walking hardware that accesses translation tables in main memory. A
single set of two-level page tables stored in main memory controls the contents of the
instruction and data side Translation Lookaside Buffers (TLBs). The finished Virtual
Address to physical address translation is put into the TLB. The TLBs are enabled from
a single bit in CP15 Control Register c1, providing a single address translation and
protection scheme from software.

The MMU features are:

• standard ARMv6 MMU mapping sizes, domains, and access protection scheme

• mapping sizes are 4KB, 64KB, 1MB, and 16MB

• the access permissions for 1MB sections and 16MB supersections are specified
for the entire section

• when using backwards compatible page table translation, you can specify access
permissions for 64KB large pages and 4KB small pages separately for each
quarter of the page (these quarters are called subpages)

• 16 domains

• one 64-entry unified TLB and a lockdown region of eight entries

• you can mark entries as a global mapping, or associated with a specific
application space identifier to eliminate the requirement for TLB flushes on most
context switches

• access permissions extended to enable supervisor read-only and supervisor/user
read-only modes to be simultaneously supported

• memory region attributes to mark pages shared by multiple processors

• hardware page table walks

• Round-Robin replacement algorithm.
5-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
The MMU memory system architecture enables fine-grained control of a memory
system. This is controlled by a set of virtual to physical address mappings and
associated memory properties held within one or more structures known as TLBs within
the MMU. The contents of the TLBs are managed through hardware translation lookups
from a set of translation tables in memory.

To prevent requiring a TLB invalidation on a context switch, you can mark each virtual
to physical address mapping as being associated with a particular application space, or
as global for all application spaces. Only global mappings and those for the current
application space are enabled at any time. By changing the Application Space IDentifier
(ASID) you can alter the enabled set of virtual to physical address mappings. The set of
memory properties associated with each TLB entry include:

Memory access permission control

This controls whether a program has no-access, read-only access, or
read/write access to the memory area. When an access is attempted
without the required permission, a memory abort is signaled to the
processor. The level of access possible can also be affected by whether
the program is running in User mode, or a privileged mode, and by the
use of domains. See Memory access control on page 5-11 for more
details.

Memory region attributes

These describe properties of a memory region. Examples include Device,
Noncachable, Write-Through, and Write-Back. If an entry for a Virtual
Address is not found in a TLB then a set of translation tables in memory
are automatically searched by hardware to create a TLB entry. This
process is known as a translation table walk. If the processor is in ARMv5
backwards-compatible mode some new features, such as ASIDs, are not
available. The MMU architecture also enables specific TLB entries to be
locked down in a TLB. This ensures that accesses to the associated
memory areas never require looking up by a translation table walk. This
minimizes the worst-case access time to code and data for real-time
routines.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-3
Unrestricted Access Non-Confidential

Memory Management Unit
5.2 TLB organization

This section describes the TLB organization in:

• MicroTLB

• Main TLB

• TLB control operations on page 5-5

• Page-based attributes on page 5-5

• Supersections on page 5-6.

5.2.1 MicroTLB

The first level of caching for the page table information is a small MicroTLB of eight
entries that is implemented on each of the instruction and data sides. These entities are
implemented in logic, providing a fully associative lookup of the Virtual Addresses in
a cycle. This means that a MicroTLB miss signal is returned at the end of the DC1 cycle.
In addition to the Virtual Address, an Address Space IDentifier (ASID) is used to
distinguish different address mappings that might be in use.

The current ASID is a small identifier, eight bits in size, that is programmed using CP15
when different address mappings are required. A memory mapping for a page or section
can be marked as being global or referring to a specific ASID. The MicroTLB uses the
current ASID in the comparisons of the lookup for all pages for which the global bit is
not set.

The MicroTLB returns the physical address to the cache for the address comparison,
and also checks the protection attributes in sufficient time to signal a Data Abort in the
DC2 cycle. An additional set of attributes for the cache line miss handler are provided
by the MicroTLB. The timing requirements for these are less critical than for the
physical address and the abort checking.

All main TLB maintenance operations affect both the instruction and data MicroTLBs,
causing them to be flushed.

The process of loading the MicroTLB from the main TLB includes the FCSE translation
if appropriate. The MicroTLB has eight entries.

5.2.2 Main TLB

The main TLB is the second layer in the TLB structure that catches the cache misses
from the MicroTLBs. It provides a centralized source for lockable translation entries.

Misses from the instruction and data MicroTLBs are handled by a unified main TLB,
that is accessed only on MicroTLB misses. Accesses to the main TLB take a variable
number of cycles, according to competing requests between each of the MicroTLBs and
5-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
other implementation-dependent factors. Entries in the lockable region of the main TLB
are lockable at the granularity of a single entry, as described in c10, TLB Lockdown
Register on page 3-58.

Main TLB implementation

The main TLB is implemented as a combination of two elements:

• a fully-associative array of eight elements that is lockable

• a low-associativity tag RAM and data RAM structure similar to that used in the
cache.

Main TLB misses

Main TLB misses are handled in hardware by the two level page table walk mechanism.
See c8, TLB Operations Register on page 3-53.

5.2.3 TLB control operations

See c8, TLB Operations Register on page 3-53 for information on TLB control
operations and c10, TLB Lockdown Register on page 3-58 for information on the TLB
Lockdown Register.

5.2.4 Page-based attributes

See Memory access control on page 5-11 for information on the page-based attributes
for access protection. See Memory region attributes on page 5-16 and Memory
attributes and types on page 5-21 for information on the memory types and page-based
cache control attributes.

See Enabling and disabling the MMU on page 5-9 for information on the behavior of
memory system when the MMU is disabled.

5.2.5 Coherency

The Snoop Control Unit manages data cache coherency issues for an access if:

• the cache policy for the page is write-back write-allocate

• the Shared bit is set for the page in the MMU

• the CPU is in coherent mode, that is, the SMP/nAMP bit [5] of the Auxiliary
Control Register is set.

When the Shared attribute is applied to a cachable page that does not match these
conditions, it is treated as noncachable.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-5
Unrestricted Access Non-Confidential

Memory Management Unit
5.2.6 Supersections

MP11 CPUs support 16MB pages, also known as supersections. These are designed for
mapping large expanses of the memory map in a single TLB entry.

Supersections are defined using a first level descriptor in the page tables, similar to the
way a section is defined. Because each first level page table entry covers a 1MB region
of virtual memory, the 16MB supersections require that 16 identical copies of the first
level descriptor of the supersection exist in the first level page table.

Every supersection is defined to have its domain as 0.

Supersections can be specified regardless of whether subpages are enabled or not, as
controlled by the CP15 Control Register XP bit [23]. The page table formats of
supersections are shown in Figure 5-5 on page 5-43 and Figure 5-9 on page 5-46.
5-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
5.3 Memory access sequence

When the processor generates a memory access, the MMU:

1. Performs a lookup for a mapping for the requested Virtual Address and current
ASID in the relevant instruction or data MicroTLB.

2. If step 1 misses, then the MMU performs a lookup for a mapping for the requested
Virtual Address and current ASID in the main TLB.

If no global mapping, or mapping for the currently selected ASID, for the Virtual
Address can be found in the TLBs then hardware automatically performs a translation
table walk. See Hardware page table translation on page 5-40.

If a matching TLB entry is found then the information it contains is used as follows:

1. The access permission bits and the domain determine the access privileges for the
attempted access. If the privileges are valid the access proceeds. Otherwise the
MMU signals a memory abort. Memory access control on page 5-11 describes
how this is done.

2. The memory region attributes control the cache and Write Buffer, and determine
if the access is coherent, cached, uncached, or Device, and if it is Shared. See
Memory region attributes on page 5-16.

3. The physical address is used for any access to external memory to perform tag
matching for instruction cache entries and lookups and tag matching for data
cache entries.

5.3.1 TLB match process

Each TLB entry contains a Virtual Address, a page size, a physical address, and a set of
memory properties. Each is associated with a particular application space, or as global
for all application spaces. Register c13 in CP15 determines the currently selected
application space. A TLB entry matches if bits [31:N] of the Virtual Address match,
where N is log2 of the page size for the TLB entry. It is either marked as global, or the
TLB entry ASID matches the current CPU ASID. The behavior of a TLB if two or more
entries match at any time, including global and ASID-specific entries, is Unpredictable.
The operating system must ensure that, at most, one TLB entry matches at any time. A
TLB can store entries based on the following four block sizes:

Supersections Consist of 16MB blocks of memory.

Sections Consist of 1MB blocks of memory.

Large pages Consist of 64KB blocks of memory.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-7
Unrestricted Access Non-Confidential

Memory Management Unit
Small pages Consist of 4KB blocks of memory.

Supersections, sections, and large pages are supported to permit mapping of a large
region of memory while using only a single entry in a TLB. If no mapping for an address
is found within the TLB, then the translation table is automatically read by hardware
and a mapping is placed in the TLB. See Hardware page table translation on page 5-40
for more details.
5-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
5.4 Enabling and disabling the MMU

You can enable and disable the MMU by writing the M bit, bit [0], of the CP15 Control
Register c1. On reset, this bit is cleared to 0, disabling the MMU.

5.4.1 Enabling the MMU

Before you enable the MMU you must:

1. Program all relevant CP15 registers. This includes setting up suitable translation
tables in memory.

2. Disable and invalidate the instruction cache. You can then re-enable the
instruction cache when you enable the MMU.

To enable the MMU proceed as follows:

1. Program the Translation Table Base and Domain Access Control Registers.

2. Program first-level and second-level descriptor page tables as required.

3. Enable the MMU by setting bit [0] in the CP15 Control Register c1.

5.4.2 Disabling the MMU

To disable the MMU proceed as follows:

1. Clear bit [2] in the CP15 Control Register c1. You must disable the data cache
before or at the same time you disable the MMU.

Note
 If the MMU is enabled, then disabled, and subsequently re-enabled, the contents

of the TLBs are preserved. If these are now invalid, you must invalidate the TLBs
before the MMU is re-enabled (see c8, TLB Operations Register on page 3-53

2. Clear bit [0] in the CP15 Control Register c1.

When the MMU is disabled, memory accesses are treated as follows:

• All data accesses are treated as Noncachable. The value of the C bit, bit [2], of the
CP15 Control Register c1 Should Be Zero.

• All instruction accesses are treated as Cachable if the I bit, bit [12], of the CP15
Control Register c1 is set to 1, and Noncachable if the I bit is set to 0.

• All explicit accesses are Strongly Ordered.

• No memory access permission checks are performed, and no aborts are generated
by the MMU.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-9
Unrestricted Access Non-Confidential

Memory Management Unit
• The physical address for every access is equal to its Virtual Address. This is
known as a flat address mapping.

• The FCSE PID Should Be Zero when the MMU is disabled. This is the reset value
of the FCSE PID. If the MMU is to be disabled the FCSE PID must be cleared.

• All change of program flow prediction is disabled. The state of the Z bit, bit [11],
of the CP15 Control Register c1 is ignored. This prevents speculative fetches
before the memory region types are defined, protecting read-sensitive I/O
locations.

• All CP15 MMU and cache operations work as normal when the MMU is disabled.
5-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
5.5 Memory access control

Access to a memory region is controlled by:

• Domains

• Access permissions on page 5-12

• Execute never bits on page 5-13.

5.5.1 Domains

A domain is a collection of memory regions. The ARM architecture supports 16
domains. Domains provide support for multi-user operating systems. All regions of
memory have an associated domain.

A domain is the primary access control mechanism for a region of memory and defines
the conditions in which an access can proceed. The domain determines whether:

• access permissions are used to qualify the access

• access is unconditionally permitted to proceed

• access is unconditionally aborted.

In the latter two cases, the access permission attributes are ignored.

Each page table entry and TLB entry contains a field that specifies which domain the
entry is in. Access to each domain is controlled by a 2-bit field in the Domain Access
Control Register, CP15 c3. Each field enables very quick access to be achieved to an
entire domain, such that whole memory areas can be efficiently swapped in and out of
virtual memory. Two kinds of domain access are supported:

Clients Clients are users of domains in that they execute programs and access
data. They are guarded by the access permissions of the TLB entries for
that domain.

A client is a domain user, and each access must be checked against the
access permission settings for each memory block and the system
protection bit, the S bit, and the ROM protection bit, the R bit, in CP15
Control Register c1. Table 5-1 on page 5-12 shows the access
permissions.

Managers Managers control the behavior of the domain, the current sections and
pages in the domain, and the domain access. They are not guarded by the
access permissions for TLB entries in that domain.

Because a manager controls the domain behavior, each access requires
only to be checked to be a manager of the domain.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-11
Unrestricted Access Non-Confidential

Memory Management Unit
One program can be a client of some domains, and a manager of some other domains,
and have no access to the remaining domains. This enables flexible memory protection
for programs that access different memory resources.

5.5.2 Access permissions

The access permission bits control access to the corresponding memory region. If an
access is made to an area of memory without the required permissions, then a
permission fault is raised.

The access permissions are determined by a combination of the AP and APX bits in the
page table, and the S and R bits in CP15 Control Register c1. For page tables not
supporting the APX bit, the value 0 is used.

Changes to the S and R bits do not affect the access permissions of entries already in the
TLB. You must flush the TLB to enable the updated S and R bits to take effect.

Note
 The use of the S and R bits is deprecated.

Table 5-1 shows the encoding of the access permission bits.

Table 5-1 Access permission bits encoding

S R APX AP[1:0]
Privileged
permissions

User
permissions

Description

0 0 0 b00 No access No access All accesses generate a permission fault

x x 0 b01 R/W No access Privileged access only

x x 0 b10 R/W RO Writes in User mode generate permission faults

x x 0 b11 R/W R/W Full access

0 0 1 b00 - - Reserved

0 0 1 b01 RO No access Privileged RO

0 0 1 b10 RO RO Privileged/User RO

0 0 1 b11 RO RO Privileged/User RO

The S and R bits are deprecated. The following entries apply to legacy systems only.

0 1 0 b00 RO RO Privileged/User RO

1 0 0 b00 RO No access Privileged RO
5-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
5.5.3 Execute never bits

Each memory region can be tagged as not containing executable code. If the Execute
Never, XN, bit of the descriptor (first or second level depending on memory region size)
is set to 1, then any attempt to execute an instruction in that region results in a
permission fault. If the XN bit is cleared to 0, then code can execute from that memory
region. When the MMU is in ARMv5 mode, the descriptors do not contain the XN bit,
and all pages are executable. See the XP bit in c1, Control Register on page 3-28. In
ARMv6 mode, XP bit = 1, the descriptors specify the XN attribute, see Figure 5-5 on
page 5-43 and Figure 5-7 on page 5-45. See ARMv6 page table translation subpage AP
bits disabled on page 5-43 for more details.

5.5.4 Access permission and ForceAP bit

Table 5-2 shows the encoding for APX, AP[1:0].

1 1 0 b00 - - Reserved

0 1 1 xx - - Reserved

1 0 1 xx - - Reserved

1 1 1 xx - - Reserved

Table 5-1 Access permission bits encoding (continued)

S R APX AP[1:0]
Privileged
permissions

User
permissions

Description

Table 5-2 Access permission bits

APX AP[1:0]
Privileged
permissions

User
permissions

Description

0 00 No Access No Access All accesses generate a permission fault

0 01 R/W No Access Privileged access only

0 10 R/W RO Writes in User mode generate permission faults

0 11 R/W R/W Full access

1 00 - - Reserved
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-13
Unrestricted Access Non-Confidential

Memory Management Unit
The AP bits in the v6 MMU specification require the following encodings on APX,
AP[1:0]:

b111 RO by both privileged and unprivileged code

b011 RW by both privileged and unprivileged code

b101 RO by privileged, no access by unprivileged code

b001 RW by privileged, no access by unprivileged code

APX becomes RO/not RW and AP[1] becomes User/not Kernel, when AP[0] is set to 1.

Access Bit

The freeing of AP[0] = 0 for the common permission cases enables the introduction of
an Access Bit. The Access Bit records whether the TLB recently accessed a page or
section. The Access Bit can be used to optimize memory management algorithms in the
OS. The Access Bit is managed by software for MPCore.

Reading a page table entry into the TLB where the access bit is 0 causes a fault that can
be quickly distinguished from every other TLB generated fault. This enables fast setting
of the Access Bit in software. Functionally, it behaves in a very similar manner to the
Translation fault, but avoids the requirement to distinguish between unallocated entries
(handled by the Translation Fault) and entries not recently used (handled by the Access
Bit Fault).

If the ForceAP bit is set, access to a region that has AP[0] set to 0 in its descriptor causes
an Access Bit Fault.

The priority of the Access Bit Fault is between the Translation Fault and the Domain
Fault. The TLB entry that causes the Access Bit fault does not have to be flushed from
the TLB after setting the Access Bit to 1.

1 01 RO No Access Privileged RO

1 10 RO RO Privileged/User RO

1 11 RO RO Privileged/User RO

Table 5-2 Access permission bits (continued)

APX AP[1:0]
Privileged
permissions

User
permissions

Description
5-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
It is Unpredictable whether the TLB caches the effect of the ForceAP bit in CP15
Register 1. As a result, the TLB must be invalidated between changing the ForceAP bit
and relying on the effect of those changes taking place.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-15
Unrestricted Access Non-Confidential

Memory Management Unit
5.6 Memory region attributes

Each TLB entry has an associated set of memory region attributes. These control:

• accesses to the caches

• how the Write Buffer is used

• if the memory region is shareable and must be kept coherent.

The MP11 CPU data caches are write-back caches only. In addition, only one cache
allocation policy is supported, that is, the L1 data cache performs a linefill on every read
miss and on every write miss. As a consequence, Inner Write-Through No Allocate on
write behaves as Inner Noncachable, and Inner Write-Back No Allocate on write
behaves as Write-Back Write-Allocate.

5.6.1 C and B bit, and type extension field encodings

Page table formats use five bits to encode the memory region type. These are TEX[2:0],
and the C and B bits. Table 5-3 shows the mapping of the Type Extension Field (TEX)
and the C and B bits to memory region type. For page tables formats with no TEX field
you must use the value b000.

Table 5-3 TEX field, and C and B bit encodings used in page table formats

Page table
encodings

Description Memory type Page shared?

TEX C B

b000 0 0 Strongly Ordered Strongly Ordered Shareda

b000 0 1 Shared Device Device Shareda

b000 1 0 Outer and Inner Write-Through,
No Allocate on Write

Normal sb

b000 1 1 Outer and Inner Write-Back, No
Allocate on Write

Normal sb

b001 0 0 Outer and Inner Noncachable Normal sb

b001 0 1 Reserved - -

b001 1 0 Reserved - -

b001 1 1 Outer and Inner Write-Back,
Write Allocate

Normal sb

b010 0 0 Non-Shared Device Device Non-Shared
5-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
Additionally certain page tables contain the Shared bit, S. This bit only applies to
Normal, not Device or Strongly Ordered memory, and determines if the memory region
is Shared (1), or Non-Shared (0). If not present the S bit is assumed to be 0
(Non-Shared).

Despite the fact that the B bit is clear for Non-Shared Device, this is a reusage of the
encoding, and does not imply that the access is not buffered.

The Inner and Outer cache policy bits AA (C and B bits) and BB (TEX[1:0]) control the
operation of memory accesses to the external memory. Table 5-4 indicates how the
MMU and cache interpret the cache policy bits.

b010 0 1 Reserved - -

b010 1 X Reserved - -

b011 X X Reserved - -

1BB A A Cached memory:

BB = Outer policy

AA = Inner policy.

See Table 5-4.

Normal sb

a. Shared, regardless of the value of the S bit in the page table.
b. s is Shared if the value of the S bit in the page table is 1, or Non-Shared if the value of the S bit is 0

or not present.

Table 5-3 TEX field, and C and B bit encodings used in page table formats (continued)

Page table
encodings

Description Memory type Page shared?

TEX C B

Table 5-4 Cache policy bits

TEX[1:0] (BB) or CB (AA) bits Cache policy

b00 Noncachable, Unbuffered

b01 Write-Back cached, Write Allocate, Buffered

b10 Write-Through cached, No Allocate on Write, Buffered

b11 Write-Back cached, No Allocate on Write, Buffered
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-17
Unrestricted Access Non-Confidential

Memory Management Unit
The terms Inner and Outer refer to levels of caches that can be built in a system. Inner
refers to the innermost caches, including level one. Outer refers to the outermost caches.
The boundary between Inner and Outer caches is defined in the implementation of a
cached system. Inner must always include level one. In a system with three levels of
caches, an example is for the Inner attributes to apply to level one and level two, while
the Outer attributes apply to level three. In a two-level system, it is envisaged that Inner
always applies to level one and Outer to level two.

In MP11 CPUs, Inner refers to level one. ARCACHE and AWCACHE show the Outer
cachable properties. ARUSER and AWUSER show the Inner Cachable values.

For an explanation of Strongly Ordered and Device see Memory attributes and types on
page 5-21.

You can choose which write allocation policy an implementation supports. The Allocate
On Write and No Allocate On Write cache policies indicate which allocation policy is
preferred for a memory region, but you must not rely on the memory system
implementing that policy. MP11 CPUs only support Inner Allocate on Write and do not
support No Allocate On Write.

Not all Inner and Outer cache policies are mandatory. Table 5-5 shows the possible
implementation options.

5.6.2 Shared

This bit indicates that the memory region can be shared by multiple processors. For a
full explanation of the Shared attribute see Memory attributes and types on page 5-21.

Table 5-5 Inner and Outer cache policy implementation options

Cache policy Implementation options Supported by MP11 CPUs?

Inner Noncachable Mandatory. Yes

Inner Write-Through Mandatory. Yes, behaves as noncacheable

Inner Write-Back Optional. If not supported, the memory system must
implement this as Inner Write-Through.

Yes, all treated as write-back
write-allocate

Outer Noncachable Mandatory. System-dependent

Outer Write-Through Optional. If not supported, the memory system must
implement this as Outer Noncachable.

System-dependent

Outer Write-Back Optional. If not supported, the memory system must
implement this as Outer Write-Through.

System-dependent
5-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
5.6.3 Page table descriptors when using remapping

Table 5-3 on page 5-16 shows the existing V6 TEX with CB encodings. This can be
re-arranged to provide a mechanism to change the functions of the encodings TEX[0],
C and B provide, using remap registers. TEX[2:1] are then freed up for software usage.
This behavior is only enabled when CP15 register 1, bit [28] is set, so providing
backward compatibility with ARMv6.

The result is that if CP15 Register 1, bit [28] is set, the effect is as shown in Table 5-6.

Primary Memory Region Remap Registers (PRRR) and Normal Memory Region
Remap Registers (NMRR) are defined in c10, Memory Region Remap Registers on
page 3-59.

Table 5-6 New V6 TEX, CB encodings

Page table
encodings

Memory type
Inner cache attributes
when mapped as Normal

Outer cache attributes
when mapped as Normal

TEX C B

XX0 0 0 PRRR[1:0] NMRR[1:0] NMRR[17:16]

XX0 0 1 PRRR[3:2] NMRR[3:2] NMRR[19:18]

XX0 1 0 PRRR[5:4] NMRR[5:4] NMRR[21:20]

XX0 1 1 PRRR[7:6] NMRR[7:6] NMRR[23:22]

XX1 0 0 PRRR[9:8] NMRR[9:8] NMRR[25:24]

XX1 0 1 PRRR[11:10] NMRR[11:10] NMRR[27:26]

XX1 1 0 RESERVED RESERVED RESERVED

XX1 1 1 PRRR[15:14] NMRR[15:14] NMRR[31:30]

Table 5-7 Page attributes and memory types

Memory type
Shareable attribute
when S = 0

Shareable attribute
when S = 1

Strongly Ordered Shareable Shareable

Device PRRR[16] PRRR[17]

Normal PRRR[18] PRRR[19]
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-19
Unrestricted Access Non-Confidential

Memory Management Unit
To provide different encodings of the Outer cache attributes from the Inner cache
attributes, the MMU remap register permits the cachable attributes to be remapped to
different values.

It is Unpredictable whether the TLB caches the effect of the TEX Remap on page tables.
As a result, the TLB must be invalidated between changing the TEX Remap bit and
relying on the effect of those changes taking place.
5-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
5.7 Memory attributes and types

The ARM11 MPCore processor provides a set of memory attributes that are suited to
particular devices, including memory devices, that can be contained in the memory
map. The ordering of accesses for regions of memory is also defined by the memory
attributes. There are three mutually exclusive main memory type attributes:

• Strongly Ordered

• Device

• Normal.

These are used to describe the memory regions. The marking of the same memory
locations as having two different attributes in the MMU, for example using synonyms
in a virtual to physical address mapping, results in architecturally Unpredictable
behavior. Table 5-8 shows a summary of the memory attributes.

Table 5-8 Memory attributes

Memory
type
attribute

Shared/
Non-Shared

Other attributes Description

Strongly
Ordered

- - All memory accesses to Strongly Ordered memory occur in
program order. Some backwards compatibility constraints
exist with ARMv5 instructions that change the CPSR interrupt
masks (see Strongly Ordered memory attribute on page 5-25).
All Strongly Ordered accesses are assumed to be shared.

Device Shared - Designed to handle memory-mapped peripherals that are
shared by several processors.

Non-Shared - Designed to handle memory-mapped peripherals that are used
only by a single processor.

Normal Shared Write-Back Cachable Coherent mode handled by the ARM11 MPCore processor.
Used with the SMP/nAMP bit of the Auxiliary Control
Register. See AMP mode and SMP mode on page 3-35.

Noncachable/

Write-Through Cachable

(treated as Noncachable)

Designed to handle normal memory that is shared between
several cores in a system. No data coherency is maintained
between MP11 CPUs level 1 data caches within the ARM11
MPCore processor.

Non-Shared Noncachable/

Write-Through Cachable

(treated as Noncachable)/

Write-Back Cachable

Designed to handle normal memory that is used only by a
single processor.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-21
Unrestricted Access Non-Confidential

Memory Management Unit
5.7.1 Normal memory attribute

The Normal memory attribute is defined on a per-page basis in the MMU and provides
memory access orderings that are suitable for normal memory. This type of memory
stores information without side effects. Normal memory can be writable or read-only.

For writable normal memory, unless there is a change to the physical address mapping:

• a load from a specific location returns the most recently stored data at that
location for the same processor

• two loads from a specific location, without a store in between, return the same
data for each load.

For read-only normal memory:

• two loads from a specific location return the same data for each load.

This behavior describes most memory used in a system, and the term memory-like is
used to describe this sort of memory. In this section, writable normal memory and
read-only normal memory are not distinguished.

Regions of memory with the Normal attribute can be Shared or Non-Shared, on a
per-page basis in the MMU. The marking of the same memory locations as being
Shared Normal and Non-Shared Normal in the MMU, for example by the use of
synonyms in a virtual to physical address mapping, results in Unpredictable behavior.

All explicit accesses to memory marked as Normal must correspond to the ordering
requirements of accesses described in Ordering requirements for memory accesses on
page 5-26. Accesses to Normal memory conform to the Weakly Ordered model of
memory ordering. A description of this model is in standard texts describing memory
ordering issues.

Shared Normal memory

The Shared Normal memory attribute is designed to describe normal memory that can
be accessed by multiple processors or other system masters.

A region of memory marked as Shared Normal is one in which the effect of interposing
a cache, or caches, on the memory system is entirely transparent. Implementations can
use a variety of mechanisms to support this, from not caching accesses in shared regions
to more complex hardware schemes for cache coherency for those regions. MP11 CPUs
cache shareable locations when the following conditions are met:

• the cache policy for the page is write-back write-allocate

• the Shared bit is set for the page in the MMU
5-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
• the MP11 CPU is in coherent mode, that is, SMP/nAMP bit [5] of the Auxiliary
Control Register is set

• the SCU has been turned on to maintain coherency in the ARM11 MPCore
processor (see SCU Control Register on page 9-4).

When these conditions are not met, shareable locations are treated as noncacheable.

Note
 When the conditions are met the ARM11 MPCore processor only guarantees coherency
among the L1 memory of its MP11 CPUs. Accesses by other system masters without
software support for coherency have unpredictable results.

Non-Shared Normal memory

The Non-Shared Normal memory attribute describes normal memory that can be
accessed only by a single processor.

A region of memory marked as Non-Shared Normal does not have any requirement to
make the effect of a cache transparent.

Cachable Write-Through, Cachable Write-Back, and Noncachable

In addition to marking a region of Normal memory as being Shared or Non-Shared, a
region of memory marked as Normal can also be marked on a per-page basis in an
MMU as being one of:

• Cachable Write-Through is mapped to Noncachable as shown in Table 5-5 on
page 5-18

• Cachable Write-Back

• Noncachable.

This marking is independent of the marking of a region of memory as being Shared or
Non-Shared, and indicates the required handling of the data region for reasons other
than those to handle the requirements of shared data.

The marking of the same memory locations as having different Cachable attributes, for
example by the use of synonyms in a virtual to physical address mapping, results in
Unpredictable behavior.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-23
Unrestricted Access Non-Confidential

Memory Management Unit
5.7.2 Device memory attribute

The Device memory attribute is defined for memory locations where an access to the
location can cause side effects, or where the value returned for a load can vary
depending on the number of loads performed. Memory-mapped peripherals and I/O
locations are typical examples of areas of memory that you must mark as Device. The
marking of a region of memory as Device is performed on a per-page basis in the MMU.

Accesses to memory-mapped locations that have side effects that apply to memory
locations that are Normal memory might require memory barriers to ensure correct
execution. An example where this might be an issue is the programming of the control
registers of a memory controller while accesses are being made to the memories
controlled by the controller.

Instruction fetches must not be performed to areas of memory containing read-sensitive
devices, because there is no ordering requirement between instruction fetches and
explicit accesses. As a result, instruction fetches from such devices can result in
Unpredictable behavior. Up to 64 bytes can be prefetched sequentially ahead of the
current instruction being executed. To enable this, read-sensitive devices must be
located in memory in such a way to enable this prefetching.

Explicit accesses from the processor to regions of memory marked as Device occur at
the size and order defined by the instruction. The number of location accesses is
specified by the program. Repeat accesses to such locations when there is only one
access in the program, that is the accesses are not restartable, are not possible in the
ARM11 MPCore processor. An example of where a repeat access might be required is
before and after an interrupt to enable the interrupt to abandon a slow access. You must
ensure these optimizations are not performed on regions of memory marked as Device.

If a memory operation that causes multiple transactions (such as an LDM or an
unaligned memory access) crosses a 1KB address boundary, then it can perform more
accesses than are specified by the program, regardless of one or both of the areas being
marked as Device. For this reason, accesses to volatile memory devices must not be
made using single instructions that cross a 1KB address boundary. This restriction is
expected to cause restrictions to the placing of such devices in the memory map of a
system, rather than to cause a compiler to be aware of the alignment of memory
accesses.

In addition, address locations marked as Device are not held in a cache.

Shared memory attribute

Regions of memory marked as Device are also distinguished by the Shared attribute in
the MMU. These memory regions can be marked as:

• Shared Device
5-24 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
• Non-Shared Device.

Explicit accesses to memory with each of the sets of attributes occur in program order
relative to other explicit accesses to the same set of attributes.

All explicit accesses to memory marked as Device must correspond to the ordering
requirements of accesses described in Ordering requirements for memory accesses on
page 5-26.

The marking of the same memory location as being Shared Device and Non-Shared
Device in an MMU, for example by the use of synonyms in a virtual to physical address
mapping, results in Unpredictable behavior.

For Shared Device memory, the data of a write is visible to all observers in the ARM11
MPCore processor before the end of a Data Synchronization Barrier memory barrier.

5.7.3 Strongly Ordered memory attribute

Another memory attribute, Strongly Ordered, is defined on a per-page basis in the
MMU. Accesses to memory marked as Strongly Ordered have a strong
memory-ordering model with respect to all explicit memory accesses from that
processor. An access to memory marked as Strongly Ordered acts as a Data Memory
Barrier (DMB) to all other explicit accesses from that processor, until the point at which
the access is complete (that is, has changed the state of the target location or data has
been returned). In addition, an access to memory marked as Strongly Ordered must
complete before the end of a memory barrier (see Explicit memory barriers on
page 5-28).

To maintain backwards compatibility with ARMv5 architecture, any ARMv5
instructions that implicitly or explicitly change the interrupt masks in the CPSR that
appear in program order after a Strongly Ordered access must wait for the Strongly
Ordered memory access to complete. These instructions are MSR with the control field
mask bit set, and the flag setting variants of arithmetic and logical instructions whose
destination register is r15, which copies the SPSR to CPSR. This requirement exists
only for backwards compatibility with previous versions of the ARM architecture, and
the behavior is deprecated in ARMv6. Programs must not rely on this behavior, but
instead include an explicit memory barrier (see Explicit memory barriers on page 5-28)
between the memory access and the following instruction.

The ARM11 MPCore processor does not require an explicit memory barrier in this
situation, but for future compatibility it is recommended that programmers insert a
memory barrier.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-25
Unrestricted Access Non-Confidential

Memory Management Unit
Explicit accesses from the processor to memory marked as Strongly Ordered occur at
their program size, and the number of accesses that occur to such locations is the
number that are specified by the program. Implementations must not repeat accesses to
such locations when there is only one access in the program (that is, the accesses are not
restartable).

If a memory operation that causes multiple transactions (such as LDM or an unaligned
memory access) crosses a 4KB address boundary, then it might perform more accesses
than are specified by the program regardless of one or both of the areas being marked
as Strongly Ordered. For this reason, it is important that accesses to volatile memory
devices are not made using single instructions that cross a 4KB address boundary.

Address locations marked as Strongly Ordered are not held in a cache, and are treated
as Shared memory locations.

For Strongly Ordered memory, the data and side effects of a write are visible to all
observers before the end of a Data Synchronization Barrier memory barrier (see Explicit
memory barriers on page 5-28).

5.7.4 Ordering requirements for memory accesses

The various memory types defined in this section have restrictions in the memory
orderings that are permitted.

Ordering requirements for two accesses

The order of any two explicit architectural memory accesses where one or more are to
memory marked as Non-Shared must obey the ordering requirements shown in
Table 5-9 on page 5-27.

Table 5-9 on page 5-27 shows the memory ordering between two explicit accesses A1
and A2, where A1 occurs before A2 in program order.

The symbols used in the table are as follows:

< Accesses must occur strictly in program order. That is, A1 must occur
strictly before A2. It must be impossible to tell otherwise from
observation of the read/write values and side effects caused by the
memory accesses.
5-26 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
? Accesses can occur in any order, provided that the requirements of
uniprocessor semantics are met, for example respecting dependencies
between instructions within a single processor.

There are no ordering requirements for implicit accesses to any type of memory.

Definition of program order of memory accesses

The program order of instruction execution is defined as the order of the instructions in
the control flow trace.

Two explicit memory accesses in an execution can either be:

Ordered Denoted by <. If the accesses are Ordered, then they must occur
strictly in order.

Weakly Ordered Denoted by <=. If the accesses are Weakly Ordered, then they
must occur in order or simultaneously.

Table 5-9 Memory ordering restrictions

A2

Normal
read

Device
read

(Non-
Shared)

Device
read

(Shared)

Strongly
Ordered
read

Normal
write

Device
write

(Non-
Shared)

Device
write

(Shared)

Strongly
Ordered
write

A1 Normal read ? ? ? < ? ? ? <

Device read
(Non-Shared)

? < ? < ? < ? <

Device read
(Shared)

? ? < < ? ? < <

Strongly Ordered
read

< < < < < < < <

Normal write ? ? ? < ? ? ? <

Device write
(Non-Shared)

? < ? < ? < ? <

Device write
(Shared)

? ? < < ? ? < <

Strongly Ordered
write

< < < < < < < <
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-27
Unrestricted Access Non-Confidential

Memory Management Unit
The rules for determining this for two accesses A1 and A2 are:

1. If A1 and A2 are generated by two different instructions, then:

• A1 < A2 if the instruction that generates A1 occurs before the instruction
that generates A2 in program order.

• A2 < A1 if the instruction that generates A2 occurs before the instruction
that generates A1 in program order.

2. If A1 and A2 are generated by the same instruction, then:

• If A1 and A2 are the load and store generated by a SWP or SWPB instruction,
then:

— A1 < A2 if A1 is the load and A2 is the store

— A2 < A1 if A2 is the load and A1 is the store.

• If A1 and A2 are two word loads generated by an LDC, LDRD, or LDM
instruction, or two word stores generated by an STC, STRD, or STM instruction,
but excluding LDM or STM instructions whose register list includes the PC,
then:

— A1 <= A2 if the address of A1 is less than the address of A2

— A2 <= A1 if the address of A2 is less than the address of A1.

• If A1 and A2 are two word loads generated by an LDM instruction whose
register list includes the PC or two word stores generated by an STM
instruction whose register list includes the PC, then the program order of
the memory operations is not defined.

Multiple load and store instructions (such as LDM, LDRD, STM, and STRD) generate multiple
word accesses, each being a separate access to determine ordering.

5.7.5 Explicit memory barriers

This section describes explicit memory barrier operations in:

• Data Memory Barrier on page 5-29

• Data Synchronization Barrier on page 5-29.

In addition, to ensure correct operation where the processor writes code, an explicit
Flush Prefetch Buffer operation is provided.

These operations are implemented by writing to the CP15 Cache Operations Register
c7. For information on how to use this register see c7, Cache Operations Register on
page 3-45.
5-28 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
Data Memory Barrier

This memory barrier ensures that all explicit memory transactions occurring in program
order before this instruction are completed. No explicit memory transactions occurring
in program order after this instruction are started until this instruction completes. Other
instructions can complete out of order with the Data Memory Barrier instruction.

Data Synchronization Barrier

This memory barrier completes when all explicit memory transactions occurring in
program order before this instruction are completed. No explicit memory transactions
occurring in program order after this instruction are started until this instruction
completes. In fact, no instructions occurring in program order after the Data
Synchronization Barrier complete, or change the interrupt masks, until this instruction
completes.

For Shared Device and Normal memory, the data of a write is visible to all observers
before the end of a Data Synchronization Barrier. For Strongly Ordered memory, the
data and the side effects of a write are visible to all observers before the end of a Data
Synchronization Barrier. For Non-Shared Device and Normal memory, the data of a
write is visible to the processor before the end of a Data Synchronization Barrier.

Flush Prefetch Buffer

The Flush Prefetch Buffer instruction flushes the pipeline in the processor, so that all
instructions following the pipeline flush are fetched from memory, (including the
instruction cache), after the instruction has been completed. Combined with Data
Synchronization Barrier, and potentially a memory barrier, this ensures that any
instructions written by the processor are executed. This guarantee is required as part of
the mechanism for handling self-modifying code. The execution of a Data
Synchronization Barrier instruction and the invalidation of the instruction cache and
branch target cache are also required for the handling of self-modifying code.

The Flush Prefetch Buffer is guaranteed to perform this function, while alternative
methods of performing the same task, such as a branch instruction, can be optimized in
the hardware to avoid the pipeline flush (for example, by using a branch predictor).

Memory synchronization primitives

Memory synchronization primitives, such as Data Synchronization Barrier, exist to
ensure synchronization between different processes, which might be running on the
same processor or on different processors. You can use memory synchronization
primitives in regions of memory marked as Shared and Non-Shared when the processes
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-29
Unrestricted Access Non-Confidential

Memory Management Unit
to be synchronized are running on the same processor. You must only use them in
Shared areas of memory when the processes to be synchronized are running on different
processors.

5.7.6 Backwards compatibility

The ARMv6 memory attributes are significantly different from those in previous
versions of the architecture. Table 5-10 shows the interpretation of the earlier memory
types in the light of this definition.

Table 5-10 Memory region backwards compatibility

Previous architectures ARMv6 attribute

NCNB (Noncachable, Non Bufferable) Strongly Ordered

NCB (Noncachable, Bufferable) Shared Device

Write-Through Cachable, Bufferable Non-Shared Normal (Write-Through Cachable)

Write-Back Cachable, Bufferable Non-Shared Normal (Write-Back Cachable)
5-30 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
5.8 MMU aborts

Mechanisms that can cause an MP11 CPU to take an exception because of a memory
access are:

MMU fault The MMU detects a restriction and signals the processor.

Debug abort Monitor debug-mode debug is enabled and a breakpoint or a
watchpoint has been detected.

External abort The external memory system signals an illegal or faulting memory
access.

Collectively these are called aborts. Accesses that cause aborts are said to be aborted.
If the memory request that aborts is an instruction fetch, then a Prefetch Abort exception
is raised if and when the processor attempts to execute the instruction corresponding to
the aborted access.

If the aborted access is a data access or a cache maintenance operation, a Data Abort
exception is raised.

All Data Aborts, and aborts caused by cache maintenance operations, cause the Data
Fault Status Register (DFSR) to be updated so that you can determine the cause of the
abort.

For all aborts, excluding External Aborts, other than on translation, the Fault Address
Register (FAR) is updated with the address that caused the abort. External Data Aborts,
other than on translation, can all be imprecise and therefore the FAR does not contain
the address of the abort. See Imprecise Data Abort mask in the CPSR/SPSR on
page 2-30 for more details on imprecise Data Aborts.

For instruction aborts the value of r14 is used by the abort handler to determine the
address that caused the abort.

5.8.1 External aborts

External memory errors are defined as those that occur in the memory system other than
those that are detected by an MMU. External memory errors are expected to be
extremely rare and are likely to be fatal to the running process. An example of an event
that can cause an external memory error is an uncorrectable parity or ECC failure on a
level two memory structure.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-31
Unrestricted Access Non-Confidential

Memory Management Unit
External abort on instruction fetch

Externally generated errors during an instruction prefetch are precise in nature, and are
only recognized by the processor if it attempts to execute the instruction fetched from
the location that caused the error. The resulting failure is reported in the Instruction
Fault Status Register if no higher priority abort (including a Data Abort) has taken
place.

If there is an External Abort during a cache line fill to the a memory barrier, the cache
line being filled is not marked as valid. If the abort occurred on a word that the processor
subsequently attempts to execute, a precise abort occurs.

The Fault Address Register is not updated on an External Abort on instruction fetch.

External abort on data read/write

Externally generated errors during a data read or write can be imprecise. This means
that r14_abt on entry into the abort handler on such an abort might not hold an address
that is related to the instruction that caused the exception. Correspondingly, External
Aborts can be unrecoverable. See Aborts on page 2-28 for more details.

If there is an External Abort during a cache line fill to the data cache, the cache line
being filled is not marked as valid. If the abort occurred on a word that the processor has
requested, then the processor takes an External Abort.

This abort can be precise or imprecise. See External Aborts handling on page 7-6.

The Fault Address Register is not updated on an imprecise External Abort on a data
access.

External abort on a hardware page table walk

An External Abort occurring on a hardware page table access must be returned with the
page table data. Such aborts are precise. The Fault Address Register is updated on an
External Abort on a hardware page table walk on a data access, but not on an instruction
access. The appropriate Fault Status Register indicates that this has occurred.
5-32 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
5.9 MMU fault checking

During the processing of a section or page, the MMU behaves differently because it is
checking for faults. The MMU generates four types of fault:

• Alignment fault on page 5-36

• Translation fault on page 5-36

• Domain fault on page 5-37

• Permission fault on page 5-37.

Aborts that are detected by the MMU are taken before any external memory access
takes place.

Alignment fault checking is enabled by the A bit in the Control Register CP15 c1.
Alignment fault checking is independent of the MMU being enabled. Translation,
domain, and permission faults are only generated when the MMU is enabled.

The access control mechanisms of the MMU detect the conditions that produce these
faults. If a fault is detected as the result of a memory access, the MMU aborts the access
and signals the fault condition to the processor. The MMU retains status and address
information about faults generated by data accesses in DFSR and FAR (see Fault status
and address on page 5-38). The MMU does not retain status about faults generated by
instruction fetches.

An access violation for a given memory access inhibits any corresponding external
access, and an abort is returned to the MP11 CPU.

5.9.1 Fault checking sequence

Figure 5-1 on page 5-34 and Figure 5-2 on page 5-35 show the fault checking sequence
for translation table managed TLB modes.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-33
Unrestricted Access Non-Confidential

Memory Management Unit
Figure 5-1 Translation table managed TLB fault checking sequence 1

Figure 5-2 on page 5-35 shows the fault checking sequence for translation table
managed TLB modes.

Virtual address

Checking
alignment?

Check address
alignment

Misaligned?

Yes

No
Alignment fault

Get first-level
descriptor

External
abort?

Descriptor
fault?

Translation
external abort

(first level)

Section
translation

abort

No

No

Access bit
fault?

Section
access bit

fault

No

A

No

Yes

Yes

Yes

Yes
5-34 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
Figure 5-2 Translation table managed TLB fault checking sequence 2

Section or
page?

Get second-level
descriptor

External abort?

Invalid
descriptor?

Translation
external abort

(2nd level)

Page
translation

fault

No

Section

Yes

Yes

Page

No

No

Check domain

Access
type?

Violation?

Page
domain

fault

Sub-page
permission

fault

Check access
permissions

No access

Yes

Client

Check domain

Section
domain

fault

Section
permission

fault

No access

Yes

Client

Physical address

No No

ManagerAccess
type?

Violation?

Access bit
fault?

No

Page Access
bit fault

Yes

Check access
permissions

Condition
true?

Alignment fault

Condition is U=1, strongly
ordered or device, and

unaligned access.

A

Yes

No

Condition
true?

Alignment fault

Condition is U=1, strongly
ordered or device, and

unaligned access.

Yes

No
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-35
Unrestricted Access Non-Confidential

Memory Management Unit
5.9.2 Alignment fault

An alignment fault occurs if an MP11 CPU has attempted to access a particular data
memory size at an address location that is not aligned with that size.

Alignment checks are performed with the MMU both enabled and disabled.

5.9.3 Translation fault

There are two types of translation fault:

Section A section translation fault occurs if the first-level translation table
descriptor is marked as invalid, bits [1:0] = b00.

Page A page translation fault occurs if the second-level translation table
descriptor is marked as invalid, bits [1:0] = b00.

5.9.4 Access bit fault

This bit is only taken into account when the MMU is in ARMv6 mode, that is XP=1,
bit [23] in the CP15 Control Register.

In the configuration XP=1 and ForceAP=1, the OS uses only bits APX and AP[1] as
Access Permission bits, and AP[0] becomes an Access Bit, see Access permission and
ForceAP bit on page 5-13. The Access Bit records recent TLB access to a page, or
section, and the OS can use this to optimize memory managements algorithms.

In the MP11 CPUs the Access Bit must be managed by the software.

Reading a page table entry into the TLB when the Access Bit is 0 causes an Access Bit
fault. This fault is readily distinguished from other faults that the TLB generates and this
permits fast setting of the Access Bit in software.

The processor can generate two kind of Access Bit faults:

• Section Access Bit fault, when the Access Bit, AP[0], is contained in a first level
translation table descriptor

• Page Access Bit fault, when the Access Bit, AP[0], is contained in a second level
translation table descriptor

The Force AP and XP bits are expected to be static throughout operations.

It is Unpredictable whether the TLB caches the effect of the Force AP bit on page tables.
As a result, the TLB must be invalidated between changing the Force AP bit and relying
on the effect of those changes taking place.
5-36 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
5.9.5 Domain fault

There are two types of domain fault:

Section For a section the domain is checked when the first-level descriptor is
returned.

Page For a page the domain is checked when the second-level descriptor is
returned.

For each type, the first-level descriptor indicates the domain in CP15 c3, the Domain
Access Control Register, to select. If the selected domain has bit [0] set to 0 indicating
either no access or reserved, then a domain fault occurs.

5.9.6 Permission fault

If the 2-bit domain field returns Client, the access permission check is performed on the
access permission field in the TLB entry. A permission fault occurs if the access
permission check fails.

5.9.7 Debug event

When Monitor debug-mode debug is enabled an abort can be taken caused by a
breakpoint on an instruction access or a watchpoint on a data access. In both cases the
memory system completes the access before the abort is taken. If an abort is taken when
in Monitor debug-mode debug then the appropriate FSR (IFSR or DFSR) is updated to
indicate a debug abort.

If a watchpoint is taken the WFAR is set to the address that caused the watchpoint.
Watchpoints are not taken precisely because following instructions can run underneath
load and store multiples. The debugger must read the WFAR to determine which
instruction caused the debug event.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-37
Unrestricted Access Non-Confidential

Memory Management Unit
5.10 Fault status and address

Table 5-11 shows the encodings for the Fault Status Register.

Note
 All other Fault Status Register encodings are reserved.

If a translation abort occurs during a data cache maintenance operation by Virtual
Address, then a Data Abort is taken and the DFSR indicates the reason. The FAR
indicates the faulting address.

Table 5-11 Fault Status Register encoding

Priority Sources FSR[10,3:0] Domain FAR
SLVER/
DECERR

R/W

Highest Alignment b00001 Invalid Valid Invalid Valid

Instruction cache
maintenancea operation
fault

b00100 Invalid Valid Invalid Invalid

External Abort on
translation

First-level b01100 Invalid Valid Valid Valid

Second-level b01110 Valid Valid Valid Valid

Translation Section b00101 Invalid Valid Invalid Valid

Page b00111 Valid Valid Invalid Valid

Access bit Section b00011 Invalid Valid Invalid Valid

Page b00110 Valid Valid Invalid Valid

Domain Section b01001 Valid Valid Invalid Valid

Page b01011 Valid Valid Invalid Valid

Permission Section b01101 Valid Valid Invalid Valid

Page b01111 Valid Valid Invalid Valid

Precise External Abort - b01000 Valid Valid Invalid Valid

Imprecise External Abort b10110 Invalid Invalid Valid Valid

Lowest Debug event b00010 Valid Invalid Invalid Invalid

a. These aborts cannot be signaled with the IFSR because they do not occur on the instruction side.
5-38 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
If a translation abort occurs during an Instruction cache maintenance operation by
Virtual Address, then a Data Abort is taken, and an Instruction cache maintenance
operation fault is indicated in the DFSR. The FAR indicates the faulting address.

Domain and fault address information is only available for data accesses. For instruction
aborts r14 must be used to determine the faulting address. You can determine the
domain information by performing a TLB lookup for the faulting address and extracting
the domain field.

Table 5-12 is a summary of which abort vector is taken, and which of the Fault Status
and Fault Address Registers are updated for each abort type.

Table 5-12 Summary of aborts

Abort type Abort taken Precise?
Register updated?

IFSR WFAR DFSR FAR

Instruction MMU fault Prefetch Abort Yes Yes No No No

Instruction Debug Abort Prefetch Abort Yes Yes No No No

Instruction External Abort on translation Prefetch Abort Yes Yes No No No

Instruction External Abort Prefetch Abort Yes Yes No No No

Memory barrier maintenance operation Data Abort Yes Yes Yesa Yes Yes

Data MMU fault Data Abort Yes No Yesa Yes Yes

Data Debug Abort Data Abort No No Yes Yes Yesb

Data External Abort on translation Data Abort Yes No Yesa Yes Yes

Data External Abort Data Abort Noc No No Yes No

Data cache maintenance operation Data Abort Yes No Yesa Yes Yes

a. Although the WFAR is updated by the processor the behavior is architecturally Unpredictable.
b. The processor updates the FAR with an Unpredictable value.
c. Data Aborts can be precise, see External aborts on page 5-31 for more details.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-39
Unrestricted Access Non-Confidential

Memory Management Unit
5.11 Hardware page table translation

MP11 CPU MMU implements the hardware page table walking mechanism from
ARMv4 and ARMv5 cached processors with the exception of the fine page table
descriptor.

A hardware page table walk occurs whenever there is a TLB miss. MPCore hardware
page table walks do not cause a read from the level one unified/data cache. The P, RGN,
S, and C bits in the Translation Table Base Registers determine the memory region
attributes for the page table walk.

Two formats of page tables are supported:

• A backwards-compatible format supporting subpage access permissions. These
have been extended so that certain page table entries support extended region
types.

• ARMv6 format, not supporting sub-page access permissions, but with support for
ARMv6 MMU features. These features are:

— extended region types

— global and process specific pages

— more access permissions

— marking of Shared and Non-Shared regions

— marking of Execute-Never regions.

Additionally two translation table base registers are provided. On a TLB miss, the
Translation Table Base Control Register, CP15 c2, and the top bits of the Virtual
Address determine if the first or second translation table base is used. See c2,
Translation Table Base Control Register on page 3-39 for details. The first-level
descriptor indicates whether the access is to a section or to a page table. If the access is
to a page table, the MPCore MMU fetches a second-level descriptor.

A page table holds 256 32-bit entries 4KB in size. You can determine the page type by
examining bits [1:0] of the second-level descriptor.

For both first and second level descriptors if bits [1:0] are b00, the associated Virtual
Addresses are unmapped, and attempts to access them generate a translation fault.
Software can use bits [31:2] for its own purposes in such a descriptor, because they are
ignored by the hardware. Where appropriate, ARM Limited recommends that bits
[31:2] continue to hold valid access permissions for the descriptor.
5-40 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
5.11.1 Backwards-compatible page table translation (subpage AP bits enabled)

When the CP15 Control Register c1 bit [23] is set to 0, the subpage AP bits are enabled
and the page table formats are backwards-compatible with ARMv4 and ARMv5 MMU
architectures.

All mappings are treated as global, and executable (XN = 0). All Normal memory is
Non-Shared. Device memory can be Shared or Non-Shared as determined by the TEX
bits and the C and B bits.

For large and small pages, there can be four subpages defined with different access
permissions. For a large page, the subpage size is 16KB and is accessed using bits
[15:14] of the page index of the Virtual Address. For a small page, the subpage size is
1KB and is accessed using bits [11:10] of the page index of the Virtual Address.

The use of subpage AP bits where AP3, AP2, AP1, and AP0 contain different values is
deprecated.

Caution
 1KB subpages are supported but deprecated. 1KB data subpages are not allocated in the
Data MicroTLB. Using 1KB data subpages decreases performance.

Backwards-compatible page table format

Figure 5-3 shows a backwards-compatible format first-level descriptor.

Figure 5-3 Backwards-compatible first-level descriptor format

If the P bit is supported and set for the memory region, it indicates to the system memory
controller that this memory region has ECC enabled.

Translation fault

Coarse page table

Section (1MB)

Reserved

Supersection
(16MB)

0

31 24 23 20 19 18 17 15 14 12 11 10 9 8 5 4 3 2 1 0

0Ignored

10Coarse page table base address P Domain SBZ

01Section base address P Domain 0
S
B
Z

0 SBZ TEX AP C B

01Supersection base
address P Ignored 0SBZ 1 SBZ TEX AP C B

11
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-41
Unrestricted Access Non-Confidential

Memory Management Unit
Figure 5-4 shows a backwards-compatible format second-level descriptor for a page
table.

Figure 5-4 Backwards-compatible second-level descriptor format

For extended small page table entries without a TEX field you must use the value b000.

For details of TEX encodings see C and B bit, and type extension field encodings on
page 5-16.

Figure 5-5 on page 5-43 shows an overview of the section, supersection, and page
translation process using backwards-compatible descriptors.

Translation fault

Large page (64KB)

Small page
(4KB)

0

31 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

Ignored 0

TEX AP3 AP2 AP1 AP0 C B 0 1Large page table base address

AP3 AP2 AP1 AP0 C B 01Small page table base address

C B 1 1APTEXSBZExtended small page table base addressExtended page
5-42 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
Figure 5-5 Backwards-compatible section, supersection, and page translation

5.11.2 ARMv6 page table translation subpage AP bits disabled

When the CP15 Control Register c1 bit [23] is set to 1, the subpage AP bits are disabled
and the page tables have support for ARMv6 MMU features. Four new page table bits
are added to support these features:

• The Not-Global (nG) bit, determines if the translation is marked as global (0), or
process-specific (1) in the TLB. For process-specific translations, the translation
is inserted into the TLB using the current ASID, from the ContextID Register,
CP15 c13.

• The Shared (S) bit, determines if the translation is for Non-Shared (0), or Shared
(1) memory. This only applies to Normal memory regions. Device memory can
be Shared or Non-Shared as determined by the TEX bits and the C and B bits.

• The Execute-Never (XN) bit, determines if the region is Executable (0) or
Not-executable (1).

10
01

00 = Invalid

00 = Invalid

01

11 = Reserved

Indexed by
VA[19:0]

Indexed by
VA[19:12]

Indexed by
VA[11:0]

Indexed by
VA[15:0]

16KB level one
page table

1MB section

Coarse page
table

4KB small page

64KB large page

Indexed by
VA[31:20]

31 0

31 0

31 0

10 (bit 18 = 0)

10 (bit 18 =1)

Indexed by
VA[23:0]

16MB
supersection

16KB subpage
16KB subpage
16KB subpage
16KB subpage

1KB subpage
1KB subpage
1KB subpage
1KB subpage

11

Indexed by
VA[11:0]

4KB extended
small page

31 0
Base address

from L1D[31:20]

Base address
from L1D[31:10]

Translation table base
Base address

from L2D[31:16]

Base address
from L1D[31:24]

Base address
from L2D[31:12]

Base address
from L2D[31:12]
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-43
Unrestricted Access Non-Confidential

Memory Management Unit
• Three access permission bits. The access permissions extension (APX) bit,
provides an extra access permission bit.

All ARMv6 page table mappings support the TEX field.

ARMv6 page table format

Figure 5-6 shows the format of an ARMv6 first-level descriptor when subpages are
enabled.

Figure 5-6 ARMv6 first-level descriptor formats with subpages enabled

Figure 5-7 on page 5-45 shows the format of an ARMv6 first-level descriptor when
subpages are disabled.

Translation fault

Coarse page table

Section (1MB)

Reserved

Supersection
(16MB)

0

31 24 23 20 19 18 17 15 14 12 11 10 9 8 5 4 3 2 1 0

0Ignored

10Coarse page table base address P Domain SBZ

01Section base address P Domain 0
S
B
Z

0 SBZ TEX AP C B

01Supersection base
address P Ignored 0SBZ 1 SBZ TEX AP C B

11
5-44 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
Figure 5-7 ARMv6 first-level descriptor formats with subpages disabled

If the P bit is supported and set for the memory region, it indicates to the system memory
controller that this memory region has ECC enabled.

In addition to the invalid translation, bits [1:0] = b00, translations for the reserved entry,
bits [1:0] = b11, result in a translation fault.

Bit [18] of the first-level descriptor selects between a 1MB section and a 16MB
supersection. For details of supersections see Supersections on page 5-6.

Figure 5-8 shows the format of an ARMv6 second-level descriptor.

Figure 5-8 ARMv6 second-level descriptor format

Figure 5-9 on page 5-46 shows an overview of the section, supersection, and page
translation process using ARMv6 descriptors.

Translation fault

Coarse page table

Section (1MB)

Reserved

Supersection
(16MB)

0

31 24 23 20 19 18 17 15 14 12 11 10 9 8 5 4 3 2 1 0

0Ignored

10Coarse page table base address P Domain SBZ

01Section base address P Domain X
N

S
B
Z

0 TEX AP C B

01Supersection base
address P Ignored X

NSBZ 1 SBZ TEX AP C B

11

n
G S

A
P
X

16

Translation fault

Large page (64KB)

Small page
(4KB)

0

31 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

Ignored 0

TEX n
G

A
P
X

SBZ AP C B 0 1Large page table base address

n
G TEX AP C B X

N1Small page table base address

14

X
N S

S
A
P
X

ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-45
Unrestricted Access Non-Confidential

Memory Management Unit
Figure 5-9 ARMv6 section, supersection, and page translation

5.11.3 Restrictions on page table mappings for the instruction cache

The instruction cache is virtually indexed and physically tagged to reduce the cache
latency on nonsequential accesses. This implies that for 32KB and 64KB cache
configurations, 4KB pages can cause aliasing problems.

To prevent this you must ensure the following restrictions are applied:

• If multiple Virtual Addresses are mapped onto the same physical address then for
all mappings of bits [13:12] the Virtual Addresses must be equal and the same as
bits [13:12] of the physical address. The same physical address can be mapped by
TLB entries of different page sizes, including page sizes over 4KB.

• Alternatively, if all mappings to a physical address are of a page size equal to
4KB, then the restriction that bits [13:12] of the Virtual Address must equal bits
[13:12] of the physical address is not necessary. Bits [13:12] of all Virtual
Address aliases must still be equal.

1XN
01

00 = Invalid

00 = Invalid

01

11 = Reserved

Indexed by
VA[19:0]

Indexed by
VA[19:12]

Indexed by
VA[11:0]

Indexed by
VA[15:0]

16Kbyte level one
page table

1MB section

Coarse page
table

4KB extended
small page

64KB large page

Indexed by
VA[31:20]

31 0

31 0

31 0

10 (bit 18 = 0)

10 (bit 18 =1)

Indexed by
VA[23:0]

16MB
supersection

Translation
table base

Base address
from L1D[31:10]

Base address
from L1D[31:20]

Base address
from L1D[31:24]

Base address
from L2D[31:12]

Base address
from L2D[31:16]
5-46 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
There is no restriction on the more significant bits in the Virtual Address equalling those
in the physical address.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-47
Unrestricted Access Non-Confidential

Memory Management Unit
5.12 MMU descriptors

To support sections and pages, the MPCore MMU uses a two-level descriptor definition.
The first-level descriptor indicates whether the access is to a section or to a page table.
If the access is to a page table, the MPCore MMU determines the page table type and
fetches a second-level descriptor.

5.12.1 First-level descriptor address

The Translation Table Base Control Register (TTBCR) selects between the two possible
first-level descriptor addresses created by the two Translation Table Base Registers
(TTBR0 and TTBR1) and the Virtual Address from the MP11 CPU. Figure 5-10 on
page 5-49 shows the creation of a first-level descriptor address.
5-48 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
Figure 5-10 Creating a first-level descriptor address

Translation table base control

Translation base
31 14-N 13-N 3 2 1 0

P S C

First-level table index
32-N 20 19 0

Translation table base 0

Modified virtual address

Translation base
31 14-N 13-N 2 1 0

Table index 0 0

Translation base
31 14 13 3 2 1 0

P S C

First-level table index
31 20 19 0

Translation table base 1

Modified virtual address

Translation base
31 14 13 2 1 0

Table index 0 0

0 1 If (N > 0 && MVA[31:32-N] != 0)
 {TTBR0[31:14], MVA[31:20], 00}
else
 {TTBR1[31:14-N], MVA[32-N:20], 00}

Where N is the value of the Translation
Table Base Control Register c2

First-level descriptor address
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-49
Unrestricted Access Non-Confidential

Memory Management Unit
5.12.2 First-level descriptor

Using the first-level descriptor address, a request is made to external memory. This
returns the first-level descriptor. By examining bits [1:0] of the first-level descriptor, the
access type is indicated as shown in Table 5-13.

First-level translation fault

If bits [1:0] of the first-level descriptor are b00 or b11, a translation fault is generated.
This causes either a Prefetch Abort or Data Abort in the MP11 CPU.

First-level page table address

If bits [1:0] of the first-level descriptor are b01, then a page table walk is required. This
process is described in Second-level page table walk on page 5-52.

First-level section base address

If bits [1:0] of the first-level descriptor are b10, a request to a section memory block has
occurred. Figure 5-11 on page 5-51 shows the translation process for a 1MB section
using ARMv6 format (AP bits disabled).

Table 5-13 Access types from first-level descriptor bit values

Bit values Access type

b00 Translation fault

b01 Page table base address

b10 Section base address

b11 Reserved, results in translation fault
5-50 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
Figure 5-11 Translation for a 1MB section, ARMv6 format

Following the first-level descriptor translation, the physical address is used to transfer
to and from external memory the data requested from and to the MP11 CPU. This is
done only after the domain and access permission checks are performed on the
first-level descriptor for the section. These checks are described in Memory access
control on page 5-11.

Figure 5-12 on page 5-52 shows the translation process for a 1MB section using
backwards-compatible format (AP bits enabled).

0 Sn
G

A
P
X

TEX 0Section base address

31 20 19 12 11 10 9 8 5 4 3 2 1 0

0 AP P Domain X
N C B 1

First-level table index

31 20 19 0

Section index

Translation base

31 14 13 0

0Translation base

31 14 13 0

First-level table index 0

2 1

Physical address

First-level descriptor

First-level descriptor address

Modified virtual address

Translation table base

Section base address

31 20 19 0

Section index

1415161718
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-51
Unrestricted Access Non-Confidential

Memory Management Unit
Figure 5-12 Translation for a 1MB section, backwards-compatible format

5.12.3 Second-level page table walk

If bits [1:0] of the first-level descriptor bits are b01, then a page table walk is required.
The MMU requests the second-level page table descriptor from external memory.
Figure 5-13 on page 5-53 shows how the second-level page table address is generated.

TEX 0Section base address

31 20 19 12 11 10 9 8 5 4 3 2 1 0

SBZ AP P Domain 0 C B 1

First-level table index

31 20 19 0

Section index

Translation base

31 14 13 0

0Translation base

31 14 13 0

First-level table index 0

2 1

Physical address

First-level descriptor

First-level descriptor address

Modified virtual address

Translation table base

Section base address

31 20 19 0

Section index

1415
5-52 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
Figure 5-13 Generating a second-level page table address

When the page table address is generated, a request is made to external memory for the
second-level descriptor.

By examining bits [1:0] of the second-level descriptor, the access type is indicated as
shown in Table 5-14.

SBZ 1Coarse page table base address

31 10 9 8 5 4 2 1 0

P Domain 0

First-level table index

31 20 19 12 11 0
Second-level
table index

Translation base

31 14 13 0

0Coarse page table base address

31 10 9 2 1 0
Second-level
table index 0

0Translation base

31 14 13 0

First-level table index 0

2 1

Second-level descriptor address

First-level descriptor

First-level descriptor address

Modified virtual address

Translation table base

Table 5-14 Access types from second-level descriptor bit values

Descriptor format Bit values Access type

Both b00 Translation fault

Backwards-compatible b01 64KB large page

ARMv6 b01 64KB large page

Backwards-compatible b10 4KB small page

ARMv6 b1XN 4KB extended small page

Backwards-compatible b11 4KB extended small page
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-53
Unrestricted Access Non-Confidential

Memory Management Unit
Second-level translation fault

If bits [1:0] of the second-level descriptor are b00, then a translation fault is generated.
This generates an abort to the MP11 CPU, either a Prefetch Abort for the instruction
side or a Data Abort for the data side.

Second-level large page base address

If bits [1:0] of the second-level descriptor are b01, then a large page table walk is
required. Figure 5-14 shows the translation process for a 64KB large page using
ARMv6 format (AP bits disabled).

Figure 5-14 Large page table walk, ARMv6 format

X
N STEX

1Coarse page table base address

31 10 9 8 5 4 2 1 0

P Domain SBZ 0

First-level table index

31 20 19 12 11 0

Page index

Translation base

31 14 13 0

1Page base address

31 12 11 10 9 8 6 5 4 3 2 1 0
n
G

A
P
X

SBZ AP C B 0

0Coarse page table base address

31 10 9 2 1 0
Second-level
table index 0

0Translation base

31 14 13 0

First-level table index 0

2 1

Page indexPage base address

31 0

Second-level descriptor address

Second-level descriptor

Physical address

First-level descriptor

First-level descriptor address

Modified virtual address

Translation table base

16 15

16 15

16 15

14

Second-level
table index
5-54 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
Figure 5-15 shows the translation process for a 64KB large page, or a 16KB large page
subpage, using backwards-compatible format (AP bits enabled).

Figure 5-15 Large page table walk, backwards-compatible format

Using backwards-compatible format descriptors, the 64KB large page is generated by
setting all of the AP bit pairs to the same values, AP3=AP2=AP1=AP0. If any one of
the pairs are different, then the 64KB large page is converted into four 16KB large page
subpages. The subpage access permission bits are chosen using the Virtual Address bits
[15:14].

0 TEX

1Coarse page table base address

31 10 9 8 5 4 2 1 0

P Domain SBZ 0

First-level table index

31 20 19 12 11 0

Page index

Translation base

31 14 13 0

1Page base address

31 12 11 10 9 8 7 6 5 4 3 2 1 0
AP
3

AP
2

AP
1

AP
0 C B 0

0Coarse page table base address

31 10 9 2 1 0
Second-level
table index 0

0Translation base

31 14 13 0

First-level table index 0

2 1

Page indexPage base address

31 0

Second-level descriptor address

Second-level descriptor

Physical address

First-level descriptor

First-level descriptor address

Modified virtual address

Translation table base

16 15

1415

16 15

16

Second-level
table index
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-55
Unrestricted Access Non-Confidential

Memory Management Unit
Second-level small page table walk

If bits [1:0] of the second-level descriptor are b10 for backwards-compatible format,
then a small page table walk is required.

Figure 5-16 shows the translation process for a 4KB small page or a 1KB small page
subpage using backwards-compatible format descriptors (AP bits enabled).

Figure 5-16 4KB small page or 1KB small subpage translations, backwards-compatible

Using backwards-compatible descriptors, the 4KB small page is generated by setting all
of the AP bit pairs to the same values, AP3=AP2=AP1=AP0. If any one of the pairs are
different, then the 4KB small page is converted into four 1KB small page subpages. The
subpage access permission bits are chosen using the Virtual Address bits [11:10].

1Coarse page table base address

31 10 9 8 5 4 2 1 0

P Domain SBZ 0

First-level table index

31 20 19 12 11 0
Second-level
table index Page index

Translation base

31 14 13 0

0Small page base address

31 12 11 10 9 8 7 6 5 4 3 2 1 0
AP
3

AP
2

AP
1

AP
0 C B 1

0Coarse page table base address

31 10 9 2 1 0
Second-level table

index 0

0Translation base

31 14 13 0

First-level table index 0

2 1

Page indexPage base address

31 12 11 0

Second-level descriptor address

Second-level descriptor

Physical address

First-level descriptor

First-level descriptor address

Modified virtual address

Translation table base
5-56 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
Second-level extended small page table walk

If bits [1:0] of the second-level descriptor are b1XN for ARMv6 format descriptors, or
b11 for backwards-compatible descriptors, then an extended small page table walk is
required. Figure 5-17 shows the translation process for a 4KB extended small page
using ARMv6 format descriptors (AP bits disabled).

Figure 5-17 4KB extended small page translations, ARMv6 format

Figure 5-18 on page 5-58 shows the translation process for a 4KB extended small page
or a 1KB extended small page subpage using backwards-compatible format descriptors
(AP bits enabled).

S

1Coarse page table base address

31 10 9 8 5 4 3 2 1 0

P Domain SBZ 0

First-level table index

31 20 19 12 11 0
Second-level
table index Page index

Translation base

31 14 13 0

X
NExtended small page base address

31 12 11 10 9 8 6 5 4 3 2 1 0
n
G

A
P
X

TEX AP C B 1

0Coarse page table base address

31 10 9 2 1 0
Second-level table

index 0

0Translation base

31 14 13 0

First-level table index 0

2 1

Page indexPage base address

31 12 11 0

Second-level descriptor address

Second-level descriptor

Physical address

First-level descriptor

First-level descriptor address

Modified virtual address

Translation table base
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-57
Unrestricted Access Non-Confidential

Memory Management Unit
Figure 5-18 4KB extended small page or 1KB extended small
subpage translations, backwards-compatible

Using backwards-compatible descriptors, the 4KB extended small page is generated by
setting all of the AP bit pairs to the same values, AP3=AP2=AP1=AP0. If any one of
the pairs are different, then the 4KB extended small page is converted into four 1KB
extended small page subpages. The subpage access permission bits are chosen using the
Virtual Address bits [11:10].

1Coarse page table base address

31 10 9 8 5 4 2 1 0

P Domain SBZ 0

First-level table index

31 20 19 12 11 0
Second-level
table index Page index

Translation base

31 14 13 0

1Extended small page base address

31 12 11 9 8 6 5 4 3 2 1 0

SBZ TEX AP C B 1

0Coarse page table base address

31 10 9 2 1 0
Second-level table

index 0

0Translation base

31 14 13 0

First-level table index 0

2 1

Page indexPage base address

31 12 11 0

Second-level descriptor address

Second-level descriptor

Physical address

First-level descriptor

First-level descriptor address

Modified virtual address

Translation table base
5-58 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
5.13 MMU software-accessible registers

The MMU is controlled by the system control coprocessor (CP15) registers, shown in
Table 5-15, in conjunction with page table descriptors stored in memory.

You can access all the registers with instructions of the form:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>
MCR p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

Where CRn is the system control coprocessor register. Unless specified otherwise, CRm
and Opcode_2 Should Be Zero.

Table 5-15 CP15 register functions

Register CRn Bits Description

TLB Type
Register

c0 [23:16] ILsize,

[15:8] DLsize,

[0] U

The number of the TLB entries for the lockable TLB partitions is
specified by the DLsize and ILsize fields respectively. See c0, TLB
Type Register on page 3-13.

U bit, unified or separate TLBs:

0 = unified TLB

1 = separate instruction and data TLBs.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-59
Unrestricted Access Non-Confidential

Memory Management Unit
Control
Register

c1 [0] M,

[1] A,

[2] C,

[3] W,

[8] S,

[9] R,

[12]I

[23] XP

[28] TEX_REMAP

[29] FORCE_AP

M bit, MMU enable/disable:

0 = MMU disabled

1 = MMU enabled.

A bit, strict data address alignment fault enable/disable:

0 = strict data address alignment fault checking disabled

1 = strict data address alignment fault checking enabled.

C bit, level one data cache enable/disable:

0 = data cache disabled

1 = data cache enabled.

W bit, Write Buffer enable/disable. If implemented:

0 = Write Buffer disabled

1 = Write Buffer enabled.

If not implemented, this bit reads as 1, writes ignored.

S bit, system protection bit. Deprecated. See c1, Control Register
on page 3-28.

I bit, instruction cache enable/disable:

0 = instruction cache disabled

1 = instruction cache enabled.

R bit, ROM protection. Deprecated. See c1, Control Register on
page 3-28.

XP bit, extended page table configuration:

0 = subpage AP bits enabled (backwards-compatible format
descriptors used)

1 = subpage AP bits disabled, hardware translation tables support
additional ARMv6 features (ARMv6 descriptors used).

TEX_REMAP

0 = no remapping

1 = remap registers are used for remapping.

FORCE_AP

0 = Access Bit not used

1 = AP[0] used as Access Bit.

Auxiliary
Control
Register

c0 [5] SMP/nAMP bit 0 = AMP, processor is not part of coherency

1 = SMP, processor is part of coherency.

Table 5-15 CP15 register functions (continued)

Register CRn Bits Description
5-60 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
Translation
Table Base
Register 0

c2 [31:14-N] TTBR0 Pointer to the first-level translation table base 0 address for
accessing page tables for process-specific addresses. N is the value
of the Translation Table Base Control Register 2. It determines the
boundary address of the translation table:

If N = 0, the page table must reside on a 16KB boundary

If N = 1, the page table must reside on a 8KB boundary

...

If N = 7, the page table must reside on a 128-byte boundary.

See c2, Translation Table Base Register 0 on page 3-36.

Translation
Table Base
Register 1

c2 [31:14] TTBR1 Pointer to the first-level translation table base 0 address for
accessing page tables for system and I/O addresses.

See c2, Translation Table Base Register 0 on page 3-36.

Translation
Table Base
Control
Register

c2 [2:0] N Translation table base register control:

0 = use TTBR0. Backwards compatible with ARMv5.

1 = if VA [31] = b0, use TTBR0, otherwise use TTBR1

2 = if VA[31:30] = b00, use TTBR0, otherwise use TTBR1

...

7 = if VA[31:25] = b0000000, use TTBR0, otherwise use TTBR1.

See c2, Translation Table Base Control Register on page 3-39.

Domain
Access
Control
Register

c3 [31:0] D15-D0 Comprises 16 2-bit fields. Each field defines the access control
attributes for one of 16 domains, D15–D0.

See c3, Domain Access Control Register on page 3-40.

Data Fault
Status
Register
(DFSR)

c5 [12]SD

[11]Not read/write

[10]Status

[7:4] Domain,

[3:0] Status

Indicates the cause of a Data Abort and the domain number of the
aborted access, when a Data Abort occurs.

Bits [7:4] specify which of the 16 domains (D15–D0) was being
accessed when a fault occurred. Bits[12:10] and bits [3:0] indicate
the type of access being attempted. The value of all other bits is
Unpredictable. The encoding of these bits is shown in c5, Data
Fault Status Register on page 3-41.

Instruction
Fault Status
Register
(IFSR)

c5 [12]SD

[10]Status

[3:0] Status

Bit[12] and bit[10], and bits [3:0] indicate the type of access being
attempted. The value of all other bits is Unpredictable. The
encoding of these bits is shown in c5, Instruction Fault Status
Register on page 3-43.

Table 5-15 CP15 register functions (continued)

Register CRn Bits Description
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-61
Unrestricted Access Non-Confidential

Memory Management Unit
Fault
Address
Register
(FAR)

c6 [31:0]

Data fault address

Holds the Modified Virtual Address associated with the access that
caused the data fault. See MMU fault checking on page 5-33 for
instructions to address the FAR. See c6, Fault Address Register on
page 3-44 for details of the address stored for each type of fault.

Watchpoint
Fault
Address
Register
(WFAR)

c6 [31:0]

Watchpoint fault address

Holds the Virtual Address of the instruction that triggered the
watchpoint. See c6, Watchpoint Fault Address Register on
page 3-44 for details.

Cache
Operations
Register

c7 [31:5] MVA or

[31:30] Way,

[S+2:3] Set

Where S is log2 of the
Size Field in the c0, TLB
Type Register on
page 3-13.

[0] selects TCM when set
to 1 or cache when set to
0.

A write-only register that you can use to control a memory barrier,
data cache, and Write Buffer operations. Also used to control
operations on prefetch buffers, and branch target caches, if they are
implemented.

Instructions to this register are in one of two formats:

• MVA format

• Set/Way format.

See c7, Cache Operations Register on page 3-45 for details.

TLB
Operations
Register

c8 [31:10] MVA

[7:0] ASID

Writing to this register causes the MMU to perform TLB
maintenance operations. Three functions are provided, selected by
the value of the Opcode_2 field:

b000 = invalidate all the (unpreserved) entries in a TLB

b001 = invalidate a specific entry

b010 = invalidate entry on ASID match.

Reading from this register is Unpredictable. See c8, TLB
Operations Register on page 3-53.

TLB
Lockdown
Register

c10 [31:29] SBZ

[28:26] Victim

[0] P

The Victim field specifies which TLB entry in the lockdown region
is replaced by the translation table walk result generated by the
next TLB miss.

Any translation table walk results written to TLB entries while P =
1 are protected from being invalidated by r8 Invalidate TLB
operations. Translation table walk results written to TLB entries
while P = 0 are invalidated normally by r8 Invalidate TLB
operations.

Table 5-15 CP15 register functions (continued)

Register CRn Bits Description
5-62 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Memory Management Unit
Note
 All the CP15 MMU registers, except CP15 c7 and CP15 c8, contain state that you read
using MRC instructions and write using MCR instructions. Registers c5 and c6 are also
written by the MMU. Reading CP15 c7 and c8 is Unpredictable.

TLB remap
registers

c10 - The Primary Remap Register and the Normal Remap Register are
used to remap page table attributes set by the page table
descriptors. See c10, Memory Region Remap Registers on
page 3-59.

FCSE PID
Register

c13 [31:25] FCSE PID This register controls the fast context switch extension. See c13,
FCSE PID Register on page 3-62.

ContextID
Register

c13 [31:8] ProcID

[7:0] ASID

The bottom eight bits of this register contain the ASID of the
currently running process. The ProcID bits extend the ASID. See
c13, Context ID Register on page 3-64.

Table 5-15 CP15 register functions (continued)

Register CRn Bits Description
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 5-63
Unrestricted Access Non-Confidential

Memory Management Unit
5.14 MMU and Write Buffer

During any translation table walk the MMU has access to external memory. Before the
table walk occurs, the Write Buffer must be flushed of any related writes related to the
page descriptors to avoid read-after-write hazards.

When the MMU contains valid TLB entries that are being modified, those TLB entries
must be invalidated by software, and the Write Buffer drained using the Data
Synchronization Barrier instruction before the new section or page is accessed.
5-64 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 6
Program Flow Prediction

This chapter describes how program flow prediction locates branches in the instruction
stream and the strategies used for determining if a branch is likely to be taken or not. It
also describes the two architecturally-defined SWI functions required for
backwards-compatibility with earlier architectures for flushing the Prefetch Unit (PU)
buffers. It contains the following sections:

• About program flow prediction on page 6-2

• Branch prediction on page 6-4

• Return stack on page 6-8

• Memory Barriers on page 6-9.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 6-1
Unrestricted Access Non-Confidential

Program Flow Prediction
6.1 About program flow prediction

Program flow prediction in MP11 CPUs is carried out by:

The core Implements static branch prediction and the return stack.

The Prefetch Unit Implements dynamic branch prediction.

The MP11 CPU is responsible for handling branches the first time they are executed,
that is, when no historical information is available for dynamic prediction by the PU.

The core makes static predictions about the likely outcome of a branch early in its
pipeline and then resolves those predictions when the outcome of conditional execution
is known. Condition codes are evaluated at three points in the core pipeline, and
branches are resolved as soon as the flags are guaranteed not to be modified by a
preceding instruction.

When a branch is resolved, the core passes information to the PU so that it can make a
Branch Target Address Cache (BTAC) allocation or update an existing entry as
appropriate. The core is also responsible for identifying likely procedure calls and
returns to predict the returns. It can handle nested procedures up to three deep.

The core includes:

• a Static Branch Predictor (SBP)

• a Return Stack (RS)

• branch resolution logic

• a BTAC update interface to the PU.

The MPCore PU is responsible for fetching instructions from the memory system as
required by the integer unit, and coprocessors. The PU buffers up to three instructions
in its FIFO to:

• detect branch instructions ahead of the integer unit requirement

• dynamically predict those that it considers are to be taken

• provide branch folding of predicted branches if possible.

This reduces the cycle time of the branch instructions, therefore increases processor
performance.

The PU includes:

• a BTAC

• branch update and allocate logic

• a Dynamic Branch Predictor (DBP), and associated update mechanism

• branch folding logic.
6-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Program Flow Prediction
It is responsible for providing the core with instructions, and for requesting cache
accesses. The pattern of cache accesses is based on the predicted instruction stream as
determined by the dynamic branch prediction mechanism or the core flush mechanism.

The BTAC can:

• be globally flushed by a CP15 instruction

• have individual entries flushed by a CP15 instruction

• be enabled or disabled by a CP15 instruction.

For details of CP15 instructions see Chapter 3 Control Coprocessor CP15.

The PU prefetches all instruction types regardless of the state of the core. That is, for
ARM state, Thumb state, or Jazelle state. However the rate of draining of the PU is a
function of these states, and the functioning of the branch prediction hardware is a
function of the state. The branch prediction is performed in all states, ARM, Thumb,
and Java but branch folding operates only in ARM state.

The PU is responsible for fetching the instruction stream as dictated by:

• the Program Counter

• the dynamic branch predictor

• static prediction results in the core

• procedure calls and returns signaled by the return stack residing in the core

• exceptions, instruction aborts, and interrupts signaled by the core.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 6-3
Unrestricted Access Non-Confidential

Program Flow Prediction
6.2 Branch prediction

In ARM processors that have no PU, the target of a branch is not known until the end
of the Execute stage. At the Execute stage it is known whether or not the branch is taken.
The best performance is obtained by predicting all branches as not taken and filling the
pipeline with the instructions that follow the branch in the current sequential path. In
ARM processors without a PU, an untaken branch requires one cycle and a taken branch
requires three or more cycles.

Branch prediction enables the detection of branch instructions before they enter the
integer unit. This permits the use of a branch prediction scheme that closely models
actual conditional branch behavior.

The increased pipeline length of the MP11 CPU makes the performance penalty of any
changes in program flow, such as branches or other updates to the PC, more significant
than was the case on the ARM9TDMI or ARM1020T cores. Therefore, a significant
amount of hardware is dedicated to prediction of these changes. Two major classes of
program flow are addressed in the MPCore prediction scheme:

1. Branches (including BL, and BLX immediate), where the target address is a fixed
offset from the program counter. The prediction amounts to an examination of the
probability that a branch passes its condition codes. These branches are handled
in the Branch Predictors.

2. Loads, moves, and ALU operations writing to the PC, that can likely be identified
as a return from a procedure call. Two identifiable cases are loads to the PC from
an address derived from r13 (the stack pointer), and moves or ALU operations to
the PC derived from r14 (the Link Register). In these cases, if the calling
operation can also be identified, the likely return address can be stored in a
hardware implemented stack, termed a Return Stack (RS). Typical calling
operations are BL and BLX instructions. In addition moves or ALU operations to the
Link Register from the PC are often preludes to a branch that serves as a calling
operation. The Link Register value derived is the value required for the RS. This
was most commonly done on ARMv4T, before the BLX <register> instruction was
introduced in ARMv5T.

Branch prediction is required in the design to reduce the core branch penalty that arises
from the longer pipeline. To improve the branch prediction accuracy, a combination of
static and dynamic techniques is employed. It is possible to disable the predictors.
6-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Program Flow Prediction
6.2.1 Enabling program flow prediction

The enabling of program flow prediction is controlled by the CP15 Register c1 Z bit (bit
11), which is set to 0 on Reset. See c1, Control Register on page 3-28. The return stack,
dynamic predictor, and static predictor can also be individually controlled using the
Auxiliary Control Register. See c1, Auxiliary Control Register on page 3-33.

6.2.2 Dynamic branch predictor

The first line of branch prediction in the ARM11 MPCore processor is dynamic,
through a simple BTAC. It is virtually addressed and holds virtual target addresses. In
addition, a 2-bit value holds a prediction whether the branch is taken or not. If the
address mappings change, this cache must be flushed. A dynamic branch predictor flush
is included in the CP15 coprocessor control instructions.

A BTAC works by storing the existence of branches at particular locations in memory.
The branch target address and a prediction of whether or not it might be taken is also
stored.

The BTAC provides dynamic prediction of branches, including BL and BLX instructions
in both ARM, Thumb, and Jazelle states. The BTAC is a 128-entry direct-mapped cache
structure used for allocation of Branch Target Addresses for resolved branches. The
BTAC uses a 2-bit saturating prediction history scheme to provide the dynamic branch
prediction. When a branch has been allocated into the BTAC, it is only evicted in case
another branch is allocated at the same index.

The prediction is based on the previous behavior of this branch. The four possible states
of the prediction bits are:

• strongly predict branch taken

• weakly predict branch taken

• weakly predict branch not taken

• strongly predict branch not taken.

The history is updated for each occurrence of the branch. This updating is scheduled by
the core when the branch has been resolved.

Branch entries are allocated into the BTAC after having been resolved at the Execute
stage. BTAC hits enable branch prediction with zero cycle delay. When a BTAC hit
occurs, the Branch Target Address stored in the BTAC is used as the Program Counter
for the next Fetch. Both branches resolved taken and not taken are allocated into the
BTAC. This enables the BTAC to do the most useful amount of work and improves
performance for tight backward branching loops.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 6-5
Unrestricted Access Non-Confidential

Program Flow Prediction
6.2.3 Static branch predictor

The second level of branch prediction in the ARM11 MPCore processor uses static
branch prediction that is based solely on the characteristics of a branch instruction. It
does not make use of any history information. The scheme used in the ARM11 MPCore
processor predicts that all forward conditional branches are not taken and all backward
branches are taken. Around 65% of all branches are preceded by enough non-branch
cycles to be completely predicted.

Branch prediction is performed only when the Z bit in CP15 Register c1 is set to 1. See
c1, Control Register on page 3-28 for details of this register. Dynamic prediction works
on the basis of caching the previously seen branches in the BTAC, and like all caches
suffers from the compulsory miss that exists on the first encountering of the branch by
the predictor. A second, static predictor is added to the design to counter these misses,
and to mop-up any capacity and conflict misses in the BTAC. The static predictor
amounts to an early evaluation of branches in the pipeline, combined with a predictor
based on the direction of the branches to handle the evaluation of condition codes that
are not known at the time of the handling of these branches. Only items that have not
been predicted in the dynamic predictor are handled by the static predictor.

The static branch predictor is hard-wired with backward branches being predicted as
taken, and forward branches as not taken. The SBP looks at the MSB of the branch
offset to determine the branch direction. Statically predicted taken branches incur a
one-cycle delay before the target instructions start refilling the pipeline. The SBP works
in both ARM and Thumb states. The SBP does not function in Jazelle state. It can be
disabled using CP15 Register c1. See c1, Control Register on page 3-28.

6.2.4 Branch folding

Branch folding is a technique where, on the prediction of most branches, the branch
instruction is completely removed from the instruction stream presented to the
execution pipeline. Branch folding can significantly improve the performance of
branches, taking the CPI for branches significantly below 1.

When the PU prefetches a predicted taken instruction, it evaluates if the branch:

• is not a BL or BLX instruction (to avoid losing the link)

• does not point to a code sequence that contains a branch in the first two
instructions

• is not breakpointed

• is not aborted.

If all of the conditions are met, the branch is folded on the subsequent prefetches of the
branch.
6-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Program Flow Prediction
6.2.5 Incorrect predictions and correction

Branches are resolved at or before the Ex3 stage of the core pipeline. A misprediction
causes the pipeline to be flushed, and the correct instruction stream to be fetched. If
branch folding is implemented, the failure of the condition codes of a folded branch
causes the instruction that follows the folded branch to fail. Whenever a potentially
incorrect prediction is made, the following information, necessary for recovering from
the error, is stored:

• a recovery address in the case of a predicted taken branch instruction

• the branch target address in the case of a predicted not taken branch instruction.

The PU passes the conditional part of any folded branch into the integer unit. This
enables the integer unit to compare these bits with the processor flags and determine if
the prediction was correct or not. If the prediction was incorrect, the integer unit flushes
the PU and requests that prefetching begins from the stored recovery address.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 6-7
Unrestricted Access Non-Confidential

Program Flow Prediction
6.3 Return stack

A return stack is used for predicting the class of program flow changes that includes
loads, moves, and ALU operations, writing to the PC that can be likely identified as a
procedure call or return.

The return stack is a 3-entry circular buffer used for the prediction of procedure calls
and procedure returns. Only unconditional procedure returns are predicted.

When a procedure call instruction is predicted, the return address is taken from the
Execute stage of the pipeline and pushed onto the return stack. The instructions
recognized as procedure calls are:

• BL <dest>

• BLX <dest>

• BLX <reg>.

The first two instructions are predicted by the BTAC, unless they result in a BTAC miss.
The third instruction is not predicted. The SBP predicts unconditional procedure calls
as taken, and conditional procedure calls as not taken.

When a procedure return instruction is predicted, an instruction fetch from the location
at the top of the return stack occurs, and the return stack is popped. The instructions
recognized as procedure returns are:

• BX r14

• LDM sp!, {...,pc}

• LDR pc, [sp...].

The SBP only predicts procedure returns that are always predicted as taken.

Two classes of return stack mispredictions can exist:

• condition code failures of the return operation

• incorrect return location.

In addition, an empty return stack gives no prediction.
6-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Program Flow Prediction
6.4 Memory Barriers

Memory barrier is the general term applied to an instruction, or sequence of
instructions, used to force synchronization events by a processor with respect to retiring
load/store instructions in a processor core. A memory barrier is used to guarantee
completion of preceding load/store instructions to the programmers model, flushing of
any prefetched instructions prior to the event, or both. The ARMv6 architecture
mandates three explicit barrier instructions in the System Control Coprocessor to
support the memory order model, see the ARM Architecture Reference Manual, and
requires these instructions to be available in both privileged and User modes:

• Data Memory Barrier, see c7, Cache Operations Register on page 3-45

• Data Synchronization Barrier, see c7, Cache Operations Register on page 3-45

• Prefetch Flush, see c7, Cache Operations Register on page 3-45.

Note
 The Data Synchronization Barrier operation is synonymous with Drain Write Buffer
and Data Write Barrier in earlier versions of the architecture.

These instructions might be sufficient on their own, or might have to be used in
conjunction with cache and memory management maintenance operations, operations
that are only available in privileged modes.

6.4.1 Instruction Memory Barriers (IMBs)

Because it is impossible to entirely avoid self modifying code it is necessary to define
a sequence of operations that can be used in the middle of a self-modifying code
sequence to make it execute reliably. This sequence is called an Instruction Memory
Barrier (IMB), and might depend both on the ARM processor implementation and on
the memory system implementation.

The IMB sequence must be executed after the new instructions have been stored to
memory and before they are executed, for example, after a program has been loaded and
before its entry point is branched to. Any self-modifying code sequence that does not
use an IMB in this way has Unpredictable behavior.

An IMB might be included in-line where required, however, it is recommended that
software is designed such that the IMB sequence is provided as a call to an easily
replaceable system dependencies module. This eases porting across different
architecture variants, ARM processors, and memory systems.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 6-9
Unrestricted Access Non-Confidential

Program Flow Prediction
IMB sequences can include operations that are only usable from privileged processor
modes, such as the cache cleaning and invalidation operations supplied by the system
control coprocessor. To enable User mode programs access to privileged IMB
sequences, it is recommended that they are supplied as operating system calls, invoked
by SWI instructions.

The execution time cost of an IMB can be very large, many thousands of clock cycles,
even when a small address range is specified. For small scale uses of self-modifying
code, this is likely to lead to a major loss of performance. It is therefore recommended
that self-modifying code is only used where it is unavoidable or it produces sufficiently
large execution time benefits to offset the cost of the IMB.
6-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 7
Level 1 Memory System

This chapter describes the Level 1 memory system. It contains the following sections:

• Coherency protocol on page 7-2

• About the Level 1 data side memory system on page 7-3

• About the Level 1 instruction side memory system on page 7-10

• TLB organization on page 7-11.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 7-1
Unrestricted Access Non-Confidential

Level 1 Memory System
7.1 Coherency protocol

The coherency protocol is based on a MESI-type protocol. MESI is a write-invalidate
cache protocol. When writing to a shared location, the related coherent cache line is
invalidated in all other caches in the L1 memory system. Exclusive use is lost when
another processor tries to read that shared location.

Coherent cache line attributes can be:

Modified The cache line is present only in the current cache, and is dirty. It has been
modified from the value in main memory.

Exclusive The cache line is present only in the current cache, and is clean. It
matches main memory value.

Shared The cache line is present in more than one CPU cache and is clean. It
matches main memory value.

Invalid This coherent cache line is not present in the cache.

7.1.1 Optimizations

The ARM11 MPCore processor uses the following optimizations of the MESI-based
coherency protocol:

Direct Data Intervention
Direct Data Intervention (DDI) enables copying clean data from one
MP11 CPU L1 data cache to another MP11 CPU without accessing
external memory. This reduces read after read activity from the Level 1
cache to the Level 2 cache.

Duplicated tag RAMs
These are duplicated versions of L1 tag RAMs used by the SCU to check
for data availability before sending coherency commands to the relevant
MP11 CPUs. Coherency commands are sent only to MP11 CPUs that
must update their coherent data cache.

Migratory lines
The migratory lines feature enables moving modified lines from one
MP11 CPU to another without writing to L2 and reading the data back in
from external memory.
7-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Level 1 Memory System
7.2 About the Level 1 data side memory system

Figure 7-1 shows the Level 1 data side memory system block diagram.

Figure 7-1 Level 1 data side memory system block diagram

Micro
Translation
Lookaside

Buffer

Arbiter

Hit stage

Slots

Slot 2

Coherent
interface

Integer core Integer core

Linefill Buffer 0

Data side Bus Interface Unit

Noncoherent
interface

Translation
Lookaside

Buffer (TLB)

Exclusive
monitorNoncoherent

read

Slot 1Slot 0

Droute

SlotCacheBus
Interface

Unit

Store
Buffer

Data return path

Tag RAMDirty RAM

Store Buffer

Linefill Buffer 1
Eviction Write Buffer

(EWB)

Direct Data
Intervention

(DDI)

Cache
Coherency
Controller

Block

CP15
Controller

Data RAM
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 7-3
Unrestricted Access Non-Confidential

Level 1 Memory System
The L1 data cache is organized as a physically indexed and physically tagged cache.
The Micro-TLB produces the Physical Address from the Virtual Address before
performing the cache access.

This removes the requirement to use a software page coloring scheme on the data side
when programming the MMU. See Restrictions on page table mappings for the
instruction cache on page 5-46.

The data cache has been architected to ensure that all evictions and allocations are
performed in one clock cycle, that is, the interface for these operations is 256 bits wide.

7.2.1 Slots Unit

The Slots Unit consists of three independent slots that hold the information of each
outstanding memory request performed by the integer core.

When a memory request (read or write access) is presented to the slots, it always goes
through the following steps:

• The Micro-TLB unit converts the Virtual Address to a Physical Address and gets
cache and protection attributes. See MicroTLB on page 7-6.

• Using the cache and protection attributes, the Slots Unit then produces an MMU
or alignment fault if required.

After these steps, the read and write paths differ:

For a read memory request

The Slots Unit requests an access to the data RAM and asks one Line Fill
Buffer (LFB) for a line fill in case of a read miss.

For a write memory request

The Slots Unit sends the cache attributes, the burst information and the
data for the access to the Store Buffer (STB). If the STB is not ready to
take the write request, the memory transfer waits in the Slot Unit until the
STB is ready to take it.

Cachable bursts are cut on cache line boundaries and noncachable bursts on 1KB
boundaries. The Slots Unit computes the sequentiality information associated with the
access. This information is used to avoid unnecessary tag RAM lookups for read bursts.

As an example, for a read burst:

• For the first (nonsequential) access, all tag RAMs are enabled for the lookup. The
data RAM read is performed in parallel on all banks.
7-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Level 1 Memory System
• For the first sequential access, all data RAMs are also enabled because the way
hit information is not yet available.

• For any other sequential accesses, only the data RAM containing the requested
data is enabled based on the transfer size (8, 16, 32, or 64 bits).

7.2.2 Noncachable accesses

To avoid hazards and ordering issues some safety checks are done before starting
noncachable accesses.

Before starting any Strongly Ordered accesses, the Slots Unit ensures that:

• the STB is empty

• the LFB and Eviction Buffer are empty

• no other memory request is currently pending in the Slots Unit.

All Strongly Ordered memory accesses use the precise abort mechanism.

Before starting any Device or Normal noncachable accesses, the Slots Unit ensures that:

• For reads, the STB is empty

• No other memory request is currently pending in the Slots Unit.

All Device or Normal Noncachable memory accesses use the imprecise abort
mechanism.

This means that Device transfers are considered as bufferable, non-merging for the
STB, and that the Slots Unit does not permit Device requests reordering.

7.2.3 Locked accesses

To avoid hazards and ordering issues some safety checks are done before starting locked
memory accesses.

In case of a locked transfer (SWAP instruction) or an exclusive write (STREX variants), the
Slots Unit ensures that:

• the STB is empty

• the LFBs and Eviction Buffer are empty

• no other memory request is currently pending in the Slots Unit.

Noncachable locked and exclusive write memory transfers use the precise abort
mechanism.

In all cachable-coherent cases (hit or miss) the cache line ends up in the cache in
Modified MESI state.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 7-5
Unrestricted Access Non-Confidential

Level 1 Memory System
7.2.4 External Aborts handling

The L1 data cache handles two types of External Abort depending on the memory
region of the access:

• All Strongly Ordered accesses use the precise abort mechanism.

• All noncachable locked accesses and exclusive stores use the precise abort
mechanism.

• All cachable, Device and normal noncachable memory requests use the imprecise
abort mechanism. For example, an abort returned on a read miss (issuing a
linefill) is flagged as imprecise.

7.2.5 MicroTLB

Using the address value generated by the core, this produces the physical address and
page attributes in the same clock cycle. The page attribute information is used to prevent
any cache lookup for noncachable accesses.

This block is organized as an 8-entry Virtual Address based Micro-TLB that does
alignment checks and access permission checks. It is also connected to the main TLB
block that handles Micro-TLB misses.

7.2.6 Cache arbiter

The cache arbiter controls accesses to the data RAMs, dirty RAMs, and tag RAMs. It
receives requests from the following sources:

• CCB controller requests

• Eviction Buffer filling requests

• read requests

• allocation requests

• STB requests

• CP15 requests.

Tag RAM

Tag RAMs consist of four ways of up to 512 lines of 22-bit wide RAM organized as
follows:

• 20 bits of tag information

• one MESI exclusive bit

• one valid bit.
7-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Level 1 Memory System
Dirty RAM

The dirty RAM stores the following information:

• Line dirty attribute, one bit.

• Line inner attributes for evictions, one bit.

• Line outer attributes for evictions, two bits.

• Line shared bit attribute, one bit.

• Locally modified attribute, one bit. This bit indicates if the cache line has been
modified by the current processor. This is different from the dirty attribute
because a line can be allocated in the cache while already being in dirty state
(migratory line).

The dirty RAM array consists of one bank of up to 512 24-bit lines. One line of dirty
RAM contains all information for the four cache ways at a given index.

Data RAM

The data RAM array consists of eight banks of up to 2048 lines of 32-bit wide RAM. It
contains cache line data that can be read by the MP11 core.

7.2.7 Store buffer

The features of the store buffer are as follows:

• provides four entries with 64-bits of data and 32-bits of physical address for each
slot

• merging capability

• read requests can hit in the store buffer. In that case, data is directly sent back to
the core

• write allocation support, that is, write misses in write-back write-allocate regions
produce cache linefills.

The store buffer redirects write requests to the following blocks:

• data cache arbiter for cachable write hits

• Bus Interface Unit (BIU) for noncachable writes

• LFB for write misses.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 7-7
Unrestricted Access Non-Confidential

Level 1 Memory System
Note
 If you perform a write that is NCB followed by a write that is CB while the NCB is still
in the store buffer and the CB is in the same cache line, the system issues a deadlock
event. This sequence of writes is a programming error and the result is Unpredictable.
See c15, Performance Monitor Control Register (PMNC) on page 3-66 for details of the
deadlock event.

7.2.8 Linefill buffers

There are two linefill buffers to enable two cache line miss and refill at the same time.
Because of policy of allocation on write misses, data from the store buffer can merge
directly in a linefill buffer with data being currently read from external memory system.

A single bit stores any abort encountered during the linefill that prevents the line from
being allocated in the cache. For External Aborts on a cache linefill, the following
applies:

• If the linefill is the result of a write miss (write to write-back write-allocate
region), the write is lost and an imprecise abort is reported to the core.

• If a write access to a write-back region (read or write allocate) hits in the aborted
linefill buffer, the write is lost and an imprecise abort is reported to the core.

Sometimes the start of a linefill is suspended to take advantage of a potential full line
merging out of the store buffer into the linefill buffer. This prevents unnecessary
external reads in cases of write misses.

The data received by a linefill buffer is streamed to the core so that it does not have to
wait for linefill completion before getting its data back. In addition, read requests can
hit in a linefill buffer if it contains requested data that has not drained yet.

A drain of a linefill buffer to the cache appears to occur in only one clock cycle. The
whole line is forwarded to the cache and written in the RAMs at the same time.

7.2.9 DDI buffer

The DDI buffer is only used when the CPU receives a command from the SCU. It
receives a whole line from the data cache and then sends it to the SCU through the bus
interface. It also signals to the SCU if the line is dirty or not, and forwards the locally
modified flag
7-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Level 1 Memory System
7.2.10 Eviction buffer

This buffer receives the data from the cache from lines that have been evicted (by cache
clean operation or natural eviction). The data cache only handles one dirty bit per line,
so no half-line evictions are possible.

It then forwards the 256-bit line and its physical address to the bus interface unit.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 7-9
Unrestricted Access Non-Confidential

Level 1 Memory System
7.3 About the Level 1 instruction side memory system

The Level 1 instruction side memory system is responsible for providing the instruction
stream to the integer core of an MP11 CPU. To increase overall performance and to
reduce power consumption, it contains the following functionality:

• branch prediction

• branch folding

• instruction caching.

Branch prediction and branch folding take place before instruction cache lookup.
Instruction cache fetches are always performed after the prediction to prevent useless
cache accesses. Figure 7-2 shows the dynamic branch prediction and instruction cache
lookup blocks.

Figure 7-2 Dynamic branch prediction and instruction cache lookup blocks

The L1 instruction cache is virtually indexed and physically tagged, and in the current
cycle for the data side.

Branch Target
Address

Cache (BTAC)

Program
counter

Prefetch 1

Program
counter

Prefetch 2

Program
counter
Fetch 1

Program
counter
Fetch 2

Integer core

Instruction cache lookupDynamic branch prediction

Noncoherent instruction interface

Instruction side
Bus Interface

Unit

Linefill Buffer

Instruction
Cache Instruction

r15

I-Cache stage 1 I-Cache stage 2BTAC stage 2BTAC stage 1
7-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Level 1 Memory System
7.4 TLB organization

TLB organization is described in the following sections:

• MicroTLB

• Main TLB.

7.4.1 MicroTLB

The first level of caching for the page table information is a small MicroTLB of eight
entries that is implemented on each of the instruction and data sides. These blocks are
implemented in logic, providing a fully associative lookup of the virtual addresses in a
cycle for the instruction side. The instruction cache is virtually indexed and physically
tagged, and in the current cycle for the data side. The data cache is physically indexed
and physically tagged.

The MicroTLB returns the physical address to the cache for the address comparison,
and also checks the protection attributes to signal a Data Abort. An additional set of
attributes, to be used by the cache line miss handler, is provided by the MicroTLB.

All main TLB related operations affect both the instruction and data MicroTLBs,
causing them to be flushed. In the same way, any change of the Context ID Register or
of the FCSE PID Register causes the MicroTLBs to be flushed. This is necessary
because ASID values are not stored in MicroTLBs, and because the MicroTLBs work
on virtual addresses but not on modified virtual addresses.

7.4.2 Main TLB

The main TLB is the second layer in the TLB structure that catches the cache misses
from the MicroTLBs. It also provides a centralized source for lockable translation
entries.

Misses from the instruction and data MicroTLBs are handled by a unified main TLB,
that is accessed only on MicroTLB misses. Accesses to the main TLB take a variable
number of cycles, according to competing requests between each of the MicroTLBs and
other implementation-dependent factors. Entries in the lockable region of the main TLB
are lockable at the granularity of a single entry.

As long as the lockable region does not contain any locked entries, it can be allocated
with non-locked entries to increase overall main TLB storage size.

The main TLB is implemented as a combination of two elements:

• a fully-associative array of eight elements that is lockable
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 7-11
Unrestricted Access Non-Confidential

Level 1 Memory System
• a low-associative (2- way) tag RAM and data RAM structure similar to that used
in the cache.

Memory access sequence

When an MP11 CPU generates a memory access, the MMU:

1. Performs a lookup for a mapping of the requested virtual address in the relevant
instruction or data MicroTLB.

2. If step 1 misses then a lookup for a mapping of the requested modified virtual
address (virtual address remapped with FCSE if set) and current ASID in the main
TLB is performed.

If no global mapping, or mapping for the currently selected ASID, for the modified
virtual address can be found in the TLB then a translation table walk is automatically
performed by hardware.

If a matching TLB entry is found then the information it contains is used as follows:

1. The access permission bits and the domain are used to determine if the access is
permitted. If the access is not permitted, the MMU signals a memory abort,
otherwise the access is enabled to proceed.

2. The memory region attributes are used to control the cache and Write Buffer, and
to determine if the access is cached, noncached, or device, and if it is shared.

3. The physical address is used for any access to external memory to perform tag
matching for cache entries.

TLB match process

Each TLB entry contains a modified virtual address, a page size, a physical address, and
a set of memory properties. Each is marked as being associated with a particular
application space, or as global for all application spaces. Register c13 in CP15
determines the currently selected application space. A TLB entry matches if bits [31:N]
of the modified virtual address match, where N is log2 of the page size for the TLB
entry. It is either marked as global, or the Application Space Identifier (ASID) matched
the current ASID. The operating system must ensure that, at most, one TLB entry
matches at any time. A TLB can store entries based on the following four block sizes:

Supersections Consist of 16MB blocks of memory.

Sections Consist of 1MB blocks of memory.

Large pages Consist of 64KB blocks of memory.
7-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Level 1 Memory System
Small pages Consist of 4KB blocks of memory.

Supersections, sections and large pages are supported to permit mapping of a large
region of memory while using only a single entry in a TLB. If no mapping for an address
is found within the TLB, then the translation table is automatically read by hardware
and a mapping is placed in the TLB.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 7-13
Unrestricted Access Non-Confidential

Level 1 Memory System
7-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 8
Level 2 Memory System

This chapter describes the Level 2 memory system. It contains the following sections:

• MPCore Level 2 interface on page 8-2

• L2 exclusive mode on page 8-6

• Synchronization operations on page 8-7

• The ACLKEN signal on page 8-9.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 8-1
Unrestricted Access Non-Confidential

Level 2 Memory System
8.1 MPCore Level 2 interface

This section describes the MPCore Level 2 interface in:

• MPCore Level 2 interface overview

• Supported AXI transfers on page 8-3

• AXI transaction IDs on page 8-3

• Using the STRT instruction on page 8-4.

8.1.1 MPCore Level 2 interface overview

The ARM11 MPCore processor Level 2 interface consists, by default, of two 64-bit
wide AXI bus masters. If the two AXI bus masters have been implemented, the ARM11
MPCore processor can still operate as a single bus device by disabling AXI bus master
1 and by tying MASTER1EN LOW.

Table 8-1 shows the AXI master interface attributes.

The AXI protocol and meaning of each AXI signal are not described in this document.
For more information see the AMBA AXI Protocol Specification.

Table 8-1 AXI master interface attributes

Attribute Format

Write Issuing Capability 42, including

• eight noncachable writes per MP11 CPU

• two evictions per MP11 CPU

• two DDI evictions.

Read Issuing Capability 16, including

• one noncachable read per MP11 CPU

• one instruction read per MP11 CPU

• two linefill reads per MP11 CPU.

Combined Issuing Capability 58

Write ID Capability 16

Write Interleave Capability 1

Write ID Width 4

Read ID Capability 16

Read ID Width 4
8-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Level 2 Memory System
Supported AXI transfers

ARM11 MPCore master ports generate only a subset of all possible AXI transactions.

For coherent and noncoherent write-back write-allocate transfers the supported
transfers are:

• WRAP4 64-bit for read transfers (linefills)

• INCR4 64-bit for write transfers (evictions).

For noncoherent noncachable transfers:

• INCRN (N:1-16) 32-bit read transfers

• INCRN (N:1-9) 64-bit read transfers

• INCR1 8-bit, 16-bit, 32-bit and 64-bit read transfers

• INCRN (N:1-2) 32-bit write transfers

• INCR1 8-bit, 16-bit, 32-bit and 64-bit write transfers

• INCR1 8-bit, 16-bit, 32-bit, 64-bit exclusive read transfers

• INCR1 8-bit, 16-bit, 32-bit, 64-bit exclusive write transfers

• INCR1 32-bit read/write (locked) for swap.

The following points apply to AXI transfers:

• Wrap bursts are only read transactions, 64-bit, four data transfers

• Incr 1 can be any size for read or write

• Incr burst (more than one data transfer) are only 32-bit or 64-bit

• No transfer is marked as static

• Write transfers with all byte strobes low can occur.

8.1.2 AXI transaction IDs

The AXI ID signal is encoded as follows:

• Bits [0] and [1] define the index of the requesting CPU:

— 2'b00 for CPU0

— 2'b01 for CPU1

— 2'b10 for CPU2

— 2'b11 for CPU3.

• Bit [2] and [3] for a read transaction define the transfer type:

— 2'b00 for noncachable data read

— 2'b01 for instruction fetch

— 2'b10 for data linefills

— 2'b11 for data linefills.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 8-3
Unrestricted Access Non-Confidential

Level 2 Memory System
• Bit [2] and [3] for a write transaction define the transfer type:

— 2'b00 for noncachable data write

— 2'b01 for DDI eviction

— 2'b10 for data evictions

— 2'b11 for data evictions.

The arbitration for transaction ordering on AXI masters is round robin among the
requesting MP11 CPUs. For each CPU the data side has priority over the instruction
side.

8.1.3 Using the STRT instruction

The Store Register with Translation (STRT) instruction stores a word from a register to
memory. If the instruction is executed when the processor is in a privileged mode, the
memory system is signaled to treat the access as if the processor was in User mode.

The STRT instruction can be used by a (privileged) exception handler that is emulating a
memory access instruction that would normally execute in User mode. The access is
restricted as if it had User mode privilege.

Table 8-2 shows core modes and corresponding APROT values.

Take particular care with Noncachable write accesses when using the STRT instruction.
To put the correct information on the external bus ensure one of the following:

• The access is to Strongly-ordered memory. This ensures that the STRT instruction
does not merge in the store buffer.

Table 8-2 Core mode and APROT values

User or Privileged core mode Type of access Value of APROT

User Cachable read access User

Privileged Privileged

User Noncachable read access User

Privileged Privileged

- Cachable write access Always marked as Privileged

User Noncachable write access User

Privileged Noncachable write access Privileged, except when using STRT
8-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Level 2 Memory System
• The access is to Device memory. This ensures that the STRT instruction does not
merge in the store buffer.

• A Data Memory Barrier (DMB) command is issued before the STRT and after the
STRT. This prevents an STRT from merging into an existing slot at the same 64-bit
address, or being merged with another write at the same 64-bit address.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 8-5
Unrestricted Access Non-Confidential

Level 2 Memory System
8.2 L2 exclusive mode

You can put each MP11 CPU into L2 exclusive mode by writing to CP15 register, see
c1, Auxiliary Control Register on page 3-33.

When in L2 exclusive mode, the MPCore signals evictions to the L2 with AWUSER0
and AWUSER1. Table 8-3 shows the meanings of these pins.

Table 8-3 AWUSER pins and meanings

Bits Meaning

AWUSERx[6] The current eviction transfer is a clean transfer

AWUSERx[5] The current transfer is an eviction

AWUSERx[4:1] The attributes of the written address in the L1 memory system

0000 Strongly ordered

0001 Device

0011 Noncacheable

0110 Write through

0111 Write back

1111 Write back, Write allocate

These are also called inner attributes.

AWUSERx[0] Shared attribute
8-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Level 2 Memory System
8.3 Synchronization operations

Synchronization primitives are an extremely important part of an SMP system, and
must be treated with great care. The primitives are swap instructions, exclusive load
instructions, and exclusive store instructions.

These synchronization primitives can be used in coherent or noncachable regions.
Coherent regions are defined as Cachable, Write-Back Write-Allocate shared memory
regions, when the SMP/nAMP bit [5] is set. See c1, Auxiliary Control Register on
page 3-33.

Coherent synchronization primitives

These operations are cached in the Level 1 memory system, and the SCU
maintains coherency inside the caches and resolves hazards.

Exclusive synchronization primitives use the internal monitor block that
is available in all data caches of the ARM11 MPCore processor. An
external exclusive monitor is not necessary for coherent exclusive
primitives to work.

Noncachable synchronization primitives

These are treated as in a non-multiprocessing system. For swap
instructions, the SCU ensures that locked transfers are atomic.

Exclusive transfers are treated as normal transfers, and an exclusive
monitor must be externally implemented to monitor exclusive
transactions. Such transfers are not described in this manual. See the
ARM Architecture Reference Manual for more information.

At the SCU level all noncoherent swaps and exclusive transfers are sent
to master port 0.

8.3.1 Exclusive loads and stores

Exclusive loads and stores are a way to execute semaphores where the load and store
operations are non-atomic. This enables operations to be performed on the loaded data
before storing it.

The system guarantees that if the data that has been previously loaded has been
modified by another CPU, the store fails and the load-store sequence must be retried.

For normal non-shared and coherent memory, this behavior is checked using an internal
monitor. Otherwise, external hardware is required. Figure 8-1 on page 8-8 shows the
behavior of the exclusive monitor state machine.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 8-7
Unrestricted Access Non-Confidential

Level 2 Memory System
Figure 8-1 Exclusive monitor state machine

STREX (Tagged_address, Tagged_size)

LDREX (x, s)

STREX (x, s)

Exclusive
access

Open
access

STR (x, s)

STREX value Result

STREX (Overlap) XFAIL
OKAY

STREX (!Overlap)

x = address
s = size

Cache Line = (Tagged_address) The cache line is cleaned and invalidated

LDREX (x', s')

STR (x, s)

XFAIL
8-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Level 2 Memory System
8.4 The ACLKEN signal

The ACLKEN signal has become commonly used as a mechanism of generating a
lower speed AXI interface on a component that runs on high frequency clock.

For example, a CPU component that uses a 400 MHz main clock might interface with
a system that is running at 200 MHz. Rather than supplying the CPU with two different
clocks, the ACLKEN signal indicates which of the higher speed clock edges can be
used to generate and sample signals in the lower speed clock domain.

The clock generator that generates the clocks and the ACLKEN signal ensures that the
ACLKEN signal is HIGH on the rising clock edge that is coincident with the lower
speed rising clock edge.

Figure 8-2 shows the timing characteristics of the ACLKEN signal.

Figure 8-2 ACLKEN signal timing

Components that use the ACLKEN signal must observe the following rules:

• outputs are only updated when the clock enable is HIGH

• inputs are only sampled when the clock enable is HIGH.

CLK

ACLK

ACLKEN
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 8-9
Unrestricted Access Non-Confidential

Level 2 Memory System
8-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 9
MPCore Private Memory Region

This chapter describes the remappable memory region used to internally access the
private MPCore peripherals, the Interrupt Distributor, the MP11 CPU interrupt
interfaces, the Timers and Watchdog, and the Snoop Control Unit (SCU). It contains the
following sections:

• About the MPCore private memory region on page 9-2

• Timer and watchdog blocks on page 9-15.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 9-1
Unrestricted Access Non-Confidential

MPCore Private Memory Region
9.1 About the MPCore private memory region

Most of the MP11 CPU control operations are through CP15 instructions. These
operations are not applicable to ARM11 MPCore processor global control. ARM11
MPCore processor global control and peripherals must be accessed through
memory-mapped transfers. To reduce the complexity of the system and hide these
transactions from the L2 memory system, all registers accessible by all MP11 CPUs
within MPCore are grouped into two contiguous 4KB pages accessed through a
dedicated internal bus. These pages are relocatable through a base address defined using
pins PERIPHBASE[18:0]. Value assigned to PERIPHBASE[18:0] does not
correspond to the 19 most significant bit of the memory map base address for the
ARM11 MPcore private memory region.

Any transaction to addresses of the form {PERIPHBASE[18:0], 13’address_low_bits} is
redirected to the MPCore private memory region.

Table 9-1 shows register addresses for the ARM11 MPCore processor relative to this
base address.

Table 9-1 MPCore private memory region

Offset Peripheral Description

0x0000 - 0x00FF SCU registers SCU-specific registers on page 9-3

0x0100 - 0x01FF CPU interrupt interfaces
(identified by CPU
transaction ID)

See CPU Interrupt Interface Registers on page 10-20.

0x0200 - 0x2FF CPU 0 interrupt interface
(aliased for debug purposes)

0x0300 - 0x03FF CPU 1 interrupt interface
(aliased for debug purpose)

0x0400 - 0x04FF CPU 2 interrupt interface
(aliased for debug purposes)

0x0500 - 0x05FF CPU 3 interrupt interface
(aliased for debug purposes)
9-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Private Memory Region
9.1.1 SCU-specific registers

Table 9-2 shows the SCU-specific registers. Addresses are given relative to the base
address of the region for the SCU in the private memory region memory map. All SCU
registers are byte accessible.

0x0600 - 0x06FF CPU timer and watchdog
(identified by CPU
transaction ID)

See Timer and watchdog blocks on page 9-15.

0x0700 - 0x07FF CPU0 timer and watchdog

0x0800 - 0x08FF CPU1 timer and watchdog

0x0900 - 0x09FF CPU2 timer and watchdog

0x0A00 - 0x0AFF CPU3 timer and watchdog

0x0b00 - 0x0FFF Reserved Any access to this region causes a DECERR abort exception.

0x1000 - 0x1FFF Global Interrupt distributor See Interrupt Distributor Registers on page 10-10.

Table 9-1 MPCore private memory region (continued)

Offset Peripheral Description

Table 9-2 SCU register definition

Offset Name Reset value Type Description

0x00 Control Register 0x00001FFE R/W See SCU Control Register on page 9-4.

0x04 Configuration
Register

Implementation
Defined

RO See SCU Configuration Register on page 9-6

0x08 SCU CPU Status - R/W See SCU CPU Status Register on page 9-7.

0x0C Invalidate all - WO See SCU Invalidate All Register on page 9-8.

0x10 Performance Monitor
Control Register

0x00000000 R/W See Performance Monitor Control Register on
page 9-10.

0x14 Monitor Counter
Events 0

0x00000000 R/W See Performance monitor event registers on
page 9-12

0x18 Monitor Counter
Events 1

0x00000000 R/W
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 9-3
Unrestricted Access Non-Confidential

MPCore Private Memory Region
9.1.2 SCU Control Register

The SCU Control Register enables the SCU and controls its behavior. It must be
accessed using a read-modify-write sequence. Figure 9-1 shows the format of the SCU
Control Register.

Figure 9-1 SCU Control Register format

0x1C Monitor Counter 0 0x00000000 R/W See Count registers, MN0-MN7 on page 9-14

0x20 Monitor Counter 1 0x00000000 R/W

0x24 Monitor Counter 2 0x00000000 R/W

0x28 Monitor Counter 3 0x00000000 R/W

0x2C Monitor Counter 4 0x00000000 R/W

0x30 Monitor Counter 5 0x00000000 R/W

0x34 Monitor Counter 6 0x00000000 R/W

0x38 Monitor Counter 7 0x00000000 R/W

0x3C - 0xFC Reserved - - RAZ

Table 9-2 SCU register definition (continued)

Offset Name Reset value Type Description

Reserved

CPU peripheral interface aliasing control bits

31 13 12 9 8 5 4 1 014

SCU register access control bits
CPU interrupt interface aliasing control bits

SCU en

SCU parity checking
9-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Private Memory Region
Table 9-3 shows the SCU Control Register bit assignments.

Table 9-3 SCU Control Register bit assignments

Bits Field Description

[31:14] Reserved SBZ.

[13] SCU parity
checking

SCU parity checking enable bit:

0 = Disabled, no parity errors are reported

1 = Enabled, parity errors are reported through the corresponding parity error output
signals.

Note
 Before enabling SCU parity checking, all SCU tag must be invalidated. The parity
checking enable bit can then be set or cleared without restriction. Parity information in
the RAMs is always generated and kept up-to-date. Only error reporting is masked by this
bit.

[12:9] CPU peripheral
interface aliasing
control bits

0 = CPUn cannot access aliased region. It can only access its own timer and watchdog
registers through the dedicated offset range 0x0600 to 0x06FF as described in Table 9-1 on
page 9-2.

1 = CPUn, controlled by bit n+9, can access aliased timer and watchdog registers in the
offset range 0x0700 to 0x0A0FF of the MPCore private memory region as described in
Table 9-1 on page 9-2.

[8:5] CPU interrupt
interface aliasing
control bits

0 = CPUn cannot access aliased region. It can only access its own interrupt interface
registers through the dedicated offset range 0x0100 to 0x01FF as described in Table 9-1 on
page 9-2.

1 = CPUn, controlled by bit n+5, can access aliased interrupt interface registers in the
offset range 0x0200 to 0x050FF of the MPCore private memory region as described in
Table 9-1 on page 9-2.

[4:1] SCU register
access control
bits

0 = CPU cannot modify SCU specific register. Clearing these bits enables you to define
one or more master CPUs that control the SCU registers. This avoids unexpected changes
in SCU configuration, particularly if some CPUs are in SMP mode and others are in AMP
mode. There is a mechanism that prevents all bits being cleared at the same time.

1 = CPUn, controlled by bit n+1, can write to SCU-specific registers described in
Table 9-2 on page 9-3. By default, all CPUs can access SCU registers.

[0] SCU en 0 = SCU is disabled, coherency is not maintained between MP11 CPUs Level 1 data side
caches.

1 = SCU is enabled, coherency is maintained between MP11 CPUs Level 1 data side
caches.

In an ARM11 MPCore single CPU configuration, writing to this bit has no effect and it
is always read as zero.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 9-5
Unrestricted Access Non-Confidential

MPCore Private Memory Region
9.1.3 SCU Configuration Register

The SCU Configuration Register is read-only. Figure 9-2 shows the format for this
register.

Figure 9-2 SCU Configuration Register format

Table 9-4 shows the SCU Configuration Register bit assignments.

31 16 15 8 7 4 2 1 0

Tag RAM sizes SBZReserved

CPU
number

3

CPUs SMP

Table 9-4 SCU Configuration Register bit assignments

Bits Field Description

[31:16] Reserved SBZ.

[15:8] Tag RAM
sizes

Bits [15:14] define MP11 CPU3 tag RAM size if present.

Bits [13:12] define MP11 CPU2 tag RAM size if present.

Bits [11:10] define MP11 CPU1 tag RAM size if present.

Bits [9:8] define MP11 CPU0 tag RAM size.

The encoding is as follows

2'b11 reserved

2'b10 64KB cache, 256 indexes per tag RAM

2'b01 32KB cache, 128 indexes per tag RAM

2'b00 16KB cache, 64 indexes per tag RAM.
9-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Private Memory Region
9.1.4 SCU CPU Status Register

This register is a read/write register that specifies the state of the MP11 CPUs.
Figure 9-3 shows the format for the SCU CPU Status Register.

Figure 9-3 SCU MP11 CPU Status Register

[7:4] CPUs
SMP

Defines which CPUs are in SMP (Symmetric Multi-processing) or AMP (Asymmetric
Multi-processing) mode.

1 MP11 CPU is in SMP mode taking part in coherency.

0 MP11 CPU is in AMP mode not taking part in coherency or not present.

Bit [7] is for MP11 CPU3

Bit [6] is for MP11 CPU2

Bit [5] is for MP11 CPU1

Bit [4] is for MP11 CPU0.

[3:2] Reserved SBZ

[1:0] CPU
Number

Number of CPUs present in the ARM11 MPCore processor

2’b11 4 MP11 CPUs, CPU0-CPU3

2’b10 3 MP11 CPUs, CPU0-CPU2

2’b01 2 MP11 CPUs, CPU0-CPU1

2’b00 1 MP11 CPU, CPU0.

Table 9-4 SCU Configuration Register bit assignments (continued)

Bits Field Description

CPU2 status
CPU1 status
CPU0 status

31 8 7 6 5 4 3 2 1 0

Reserved

CPU3 status
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 9-7
Unrestricted Access Non-Confidential

MPCore Private Memory Region
Table 9-5 shows the SCU CPU Status Register bit assignments.

Dormant mode and powered-off mode are controlled by an external power controller.
SCU CPU Status Register bits indicate to the external power controller which power
domains can be powered down.

Before entering any other power mode than Normal, the MP11 CPU must set its status
field to signal to the SCU which mode it is about to enter (so that the SCU can determine
if it still can send coherency requests to the CPU). The MP11 CPU then executes a WFI
entry instruction. When in WFI state, the PWRCTLOn bus is enabled and signals to the
power controller what it must do with power domains.

The SCU CPU Status Register bits are used in conjunction with internal WFI entry
signals to generate PWRCTLOn output pins.

The SCU CPU Status Register bits can also be read by a CPU exiting low-power mode
to determine its state before executing its reset setup.

MP11 CPUs status fields take PWRCTLIn values at reset, except for nonpresent CPUs.
For nonpresent CPUs writing to this field has no effect.

9.1.5 SCU Invalidate All Register

The SCU Invalidate All Register invalidates the tag RAMs on a per CPU and per way
basis. This operation is atomic, that is, a write transfer to this address only terminates
when all the lines have been invalidated. This register reads as 0.

Figure 9-4 on page 9-9 shows the format of this register.

Table 9-5 SCU CPU Status Register bit assignments

Bits Field Description

[31:8] Reserved SBZ

[7:6] CPU3 status Status of the MP11 CPU:

2'b11 = CPU is about to enter (or is in) powered-off mode, or is nonpresent. No CCB
request is sent to the CPU.

2'b10 = CPU is about to enter (or is in) dormant mode. No CCB request is sent to the CPU

2'b01 = Reserved.

2'b00 = Normal mode (Default).

[5:4] CPU2 status

[3:2] CPU1 status

[1:0] CPU0 status
9-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Private Memory Region
Figure 9-4 SCU Invalidate All Register format

Table 9-6 shows the SCU Invalidate All Register bit assignments.

CPU0 waysCPU1 waysCPU2 waysCPU3 ways

31 8 7 4 3 0

Reserved

15 12 1116

Table 9-6 SCU Invalidate All Register bit assignment

Bits Field Description

[31:16] Reserved SBZ.

[15:12] CPU3 ways Indicates the ways that must be invalidated for MP11 CPU3. Writing to these bits has no effect
if the ARM11 MPCore processor has less than four CPUs.

Bit [15] = Way 3

Bit [14] = Way 2

Bit [13] = Way 1

Bit [12] = Way 0.

[11:8] CPU2 ways Indicates the ways that must be invalidated for MP11 CPU2. Writing to these bits has no effect
if the ARM11 MPCore processor has less than three CPUs.

Bit [11] = Way 3

Bit [10] = Way 2

Bit [9] = Way 1

Bit [8] = Way 0.

[7:4] CPU1 ways Indicates the ways that must be invalidated for MP11 CPU1. Writing to these bits has no effect
if the ARM11 MPCore processor has less than two CPUs.

Bit [7] = Way 3

Bit [6] = Way 2

Bit [5] = Way 1

Bit [4] = Way 0.

[3:0] CPU0 ways Indicates the ways that must be invalidated for MP11 CPU0.

Bit [3] = Way 3

Bit [2] = Way 2

Bit [1] = Way 1

Bit [0] = Way 0.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 9-9
Unrestricted Access Non-Confidential

MPCore Private Memory Region
9.1.6 Performance Monitor Control Register

The Performance Monitor Control Register controls the operation of the Count
Registers. This register:

• Detects which counter overflowed.

• Enables and disables interrupt reporting.

• Resets all counters to zero.

• Enables the entire performance monitoring mechanism.

The number of counters available in the design depends on the number of MP11 CPUs
in the ARM11 MPCore processor. Table 9-7 shows the relationship of the number of
MP11 CPUs and the number of counters.

Figure 9-5 shows the format of the SCU Performance Monitor Control Register.

Figure 9-5 SCU Performance Monitor Control Register format

Table 9-7 MP11 CPUs and counters

Number of MP11 CPUs Number of counters available

4 Counters MN0-MN7

3 Counters MN0-MN5

2 Counters MN0-MN3

1 Counters MN0 and MN1

E

31 25 24 16 15 8 7 2 1 0

SBZ Flags IntEn SBZ P
9-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Private Memory Region
Table 9-8 shows the Performance Monitor Control Register bit assignments.

If an interrupt is generated by the Performance Monitor Control Register, the relevant
bits of PMUIRQ are asserted:

• PMUIRQ[11] is asserted on overflow from counter MN7.

• PMUIRQ[10] is asserted on overflow from counter MN6.

Table 9-8 Performance Monitor Control Register bit assignments

Bit Name Function

[31:24] - SBZ/RAZ

[23:16] Flags Overflow/Interrupt flags

Identifies which counter overflowed.

Bit 23 Count register MN7 overflow flag, if available.

Bit 22 Count register MN6 overflow flag, if available.

Bit 21 Count register MN5 overflow flag, if available.

Bit 20 Count register MN4 overflow flag, if available.

Bit 19 Count register MN3 overflow flag, if available.

Bit 18 Count register MN2 overflow flag, if available.

Bit 17 Count register MN1 overflow flag, if available.

Bit 16 Count register MN0 overflow flag.

Writing 1 to a bit has the effect of clearing it.

[15:8] IntEn Interrupt enable

Enables and disables interrupt reporting for each counter, when available.

Bit 15 enables interruption for counter MN7 when set.

Bit 14 enables interruption for counter MN6 when set.

Bit 13 enables interruption for counter MN5 when set.

Bit 12 enables interruption for counter MN4 when set.

Bit 11 enables interruption for counter MN3 when set.

Bit 10 enables interruption for counter MN2 when set.

Bit 9 enables interruption for counter MN1 when set.

Bit 8 enables interruption for counter MN0 when set.

IntEn bits for counters that are not available always read as 0.

[7:2] Reserved SBZ

[1] P Reset all count registers when this bit is set to 1.

[0] E Enable bit

1 = all counters enabled

0 = all counters disabled.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 9-11
Unrestricted Access Non-Confidential

MPCore Private Memory Region
• PMUIRQ[9] is asserted on overflow from counter MN5.

• PMUIRQ[8] is asserted on overflow from counter MN4.

• PMUIRQ[7] is asserted on overflow from counter MN3.

• PMUIRQ[6] is asserted on overflow from counter MN2.

• PMUIRQ[5] is asserted on overflow from counter MN1.

• PMUIRQ[4] is asserted on overflow from counter MN0.

9.1.7 Performance monitor event registers

Event registers PME0 and PME1 identify the source of the event for counters
MN0-MN7. Table 9-9 shows the events and their definitions.

Table 9-9 Event definitions

Event
number

Event
source

Event definition

0 - Counter disabled

1 CPU0 The corresponding CPU has requested a coherent linefill that misses in all the other CPUs. The
request is sent to external memory.

2 CPU1

3 CPU2

4 CPU3

5 CPU0 The corresponding CPU has requested a coherent linefill that hits in another CPU. The linefill
is fetched directly from the relevant CPU cache.

6 CPU1

7 CPU2

8 CPU3

9 CPU0 The corresponding CPU was expected to have a coherent line in its cache but answers
nonpresent.

10 CPU1

11 CPU2

12 CPU3

13 - Line migration. A line is directly transferred from one CPU to another on a linefill request
instead of switching to SHARED.

14 Master0 The read port of the corresponding master port is busy.

15 Master1
9-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Private Memory Region
Performance Monitor Event Register 0

Figure 9-6 shows the format of Performance Monitor Event Register 0.

Figure 9-6 Performance Monitor Event Register 0 bit format

Table 9-10 shows the Performance Monitor Event Register 0 bit assignments.

16 Master0 The write port of the corresponding master port is busy.

17 Master1

18 - A read transfer is sent to the external memory.

19 - A write transfer is sent to the external memory.

20-30 - -

31 Cycle count The counter increments on each cycle.

Table 9-9 Event definitions (continued)

Event
number

Event
source

Event definition

EvCount0

31 24 23 16 15 7 0

EvCount3 EvCount2 EvCount1

8

Table 9-10 Performance Monitor Event Register 0 bit assignments

Bit Name Function

[31:24] EvCount3 Identifies the event for counter MN3. In configurations with less than two MP11 CPUs these bits
always read as 0.

[23:16] EvCount2 Identifies the event for counter MN2. In configurations with less than two MP11 CPUs these bits
always read as 0.

[15:8] EvCount1 Identifies the event for counter MN1.

[7:0] EvCount0 Identifies the event for counter MN0.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 9-13
Unrestricted Access Non-Confidential

MPCore Private Memory Region
Performance Monitor Event Register 1

Figure 9-6 on page 9-13 shows the format of Performance Monitor Event Register 1.

Figure 9-7 Performance Monitor Event Register 1 bit format

Table 9-11 shows the Performance Monitor Event Register 1 bit assignments.

9.1.8 Count registers, MN0-MN7

The value in the count registers is 0 at reset. The count registers are up registers. A count
register is incremented by 1 when the corresponding event is detected. Registers
MN0-MN7 are read accessible and write accessible. The number of available count
registers depends on the number of MP11 CPUs instantiated in the ARM11 MPCore
processor as shown in MP11 CPUs and counters on page 9-10.

EvCount4

31 24 23 16 15 7 0

EvCount7 EvCount6 EvCount5

8

Table 9-11 Performance Monitor Event Register 1 bit assignments

Bit Name Function

[31:24] EvCount7 Identifies the event for counter MN7. In configurations with less than four MP11 CPUs these bits
always read as 0.

[23:16] EvCount6 Identifies the event for counter MN6. In configurations with less than four MP11 CPUs these bits
always read as 0.

[15:8] EvCount5 Identifies the event for counter MN5. In configurations with less than three MP11 CPUs these
bits always read as 0.

[7:0] EvCount4 Identifies the event for counter MN4. In configurations with less than three MP11 CPUs these
bits always read as 0
9-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Private Memory Region
9.2 Timer and watchdog blocks

There are timer and watchdog blocks for each MP11 CPU present in the ARM11
MPCore processor. Both timer and watchdog blocks have the following features:

• A 32-bit counter that generates an interrupt when it reaches zero.

• An 8-bit prescaler to enable better control of the period.

• Configurable single-shot or auto-reload modes.

• Configurable starting values for the counter.

The watchdog can be configured as a timer.

9.2.1 Calculating timer intervals

The timer interval is calculated using the following equation:

This equation can be used to calculate the period between two events out of the timers
and the watchdog time-out time.

9.2.2 Timer and watchdog registers

Addresses are given relative to the base address of the region for the Interrupt
Distributor defined by the SCU memory map (see About the MPCore private memory
region on page 9-2). All timer and watchdog registers are word accessible only.
Table 9-12 shows the timer and watchdog registers. All registers not described in
Table 9-12 are Reserved.

CPU CLK_frequency

(PRESCALER_value+1) x (Load_value+1)()x 2

Table 9-12 Timer and watchdog registers

Offset Type Reset Value Name

0x00 R/W 0x00000000 Timer Load Register

0x04 R/W 0x00000000 Timer Counter Register

0x08 R/W 0x00000000 Timer Control Register

0x0C R/W 0x00000000 Timer Interrupt Status Register

0x20 R/W 0x00000000 Watchdog Load Register

0x24 R/W 0x00000000 Watchdog Counter Register

0x28 R/W 0x00000000 Watchdog Control Register
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 9-15
Unrestricted Access Non-Confidential

MPCore Private Memory Region
9.2.3 Timer Load Register, 0x00

The Timer Load Register is a 32-bit register that contains the value copied to the Timer
Counter Register when it decrements down to zero with auto reload mode enabled.
Writing to the Timer Load Register means that you also write to the Timer Counter
Register.

9.2.4 Timer Counter Register, 0x04

The Timer Counter Register is a down counter.

The Timer Counter Register decrements if the timer is enabled using the timer enable
bit in the Timer Control Register. If the MP11 CPU belonging to the timer is in debug
state, the counter does not decrement until the MP11 CPU returns to non debug state.

When the Timer Counter Register reaches zero and auto reload mode is enabled, it
reloads the value in the Timer Load Register and then decrements from that value. If
auto reload mode is not enabled the Timer Counter Register decrements down to zero
and stops.

When the Timer Counter Register reaches zero, the timer interrupt status event flag is
set and the interrupt ID 29 is set as Pending in the Interrupt Distributor, if interrupt
generation is enabled in the Timer Control Register.

Writing to the Timer Counter Register or Timer Load Register forces the Timer Counter
Register to decrement from the newly written value.

9.2.5 Timer Control Register, 0x08

Figure 9-8 on page 9-17 shows the Timer Control Register format.

0x2C R/W 0x00000000 Watchdog Interrupt Status Register

0x30 R/W 0x00000000 Watchdog Reset Sent Register

0x34 WO - Watchdog Disable Register

Table 9-12 Timer and watchdog registers (continued)

Offset Type Reset Value Name
9-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Private Memory Region
Figure 9-8 Timer Control Register format

Table 9-13 shows the Timer Control Register bit assignments.

9.2.6 Timer Interrupt Status Register, 0x0C

Figure 9-9 on page 9-18 shows the Timer Interrupt Status Register format.

The event flag is a sticky bit that is automatically set when the Counter Register reaches
zero. If the timer interrupt is enabled, Interrupt ID 29 is set as Pending in the Interrupt
Distributor after the event flag is set.

Writing a 1 to the event flag clears the bit. Trying to write a zero to the event flag or a
one when it is not set has no effect.

Auto reload
Timer enable

31 16 15 8 7 3 2 1 0

Reserved Prescaler Reserved

IT enable

Table 9-13 Timer Control Register bit assignments

Bit Name Function

[31:16] - SBZ/RAZ

[15:8] Prescaler The prescaler modifies the clock period for the decrementing event for the Counter Register.
See Calculating timer intervals on page 9-15 for the equation.

[7:3] - SBZ/RAZ

[2] IT Enable If set, the interrupt ID 29 is set as Pending in the Interrupt Distributor when the event flag is
set in the Timer Status Register.

[1] Auto-reload 1'b0 Single shot mode.

Counter decrements down to zero, sets the event flag and stops.

1'b1 Auto-reload mode.

Each time the Counter Register reaches zero, it is reloaded with the value contained in the
Load Register and then continues decrementing.

[0] Timer Enable Global timer enable

1'b0 Timer is disabled and the counter does not decrement.

All registers can still be read or/and written.

1'b1 Timer is enabled and the counter decrements normally.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 9-17
Unrestricted Access Non-Confidential

MPCore Private Memory Region
Figure 9-9 Timer Interrupt Status Register format

9.2.7 Watchdog Load Register, 0x20

The Watchdog Load Register is a 32-bit register that contains the value copied to the
Watchdog Counter Register when it decrements down to zero with auto reload mode
enabled, in Timer mode. Writing to the Watchdog Load Register means that you also
write to the Watchdog Counter Register.

9.2.8 Watchdog Counter Register, 0x24

The Watchdog Counter Register is a down counter.

It decrements if the Watchdog is enabled using the Watchdog enable bit in the Watchdog
Control Register. If the MP11 CPU belonging to the Watchdog is in debug state, the
counter does not decrement until the MP11 CPU returns to non debug state.

When the Watchdog Counter Register reaches zero and auto reload mode is enabled,
and in timer mode, it reloads the value in the Watchdog Load Register and then
decrements from that value. If auto reload mode is not enabled or the watchdog is not
in timer mode, the Watchdog Counter Register decrements down to zero and stops.

When in watchdog mode the only way to update the Watchdog Counter Register is to
write to the Watchdog Load Register. When in timer mode the Watchdog Counter
Register is write accessible.

The behavior of the watchdog when the Watchdog Counter Register reaches zero
depends on its current mode:

Timer mode When the Watchdog Counter Register reaches zero, the watchdog
interrupt status event flag is set and the interrupt ID 30 is set as Pending
in the Interrupt Distributor, if interrupt generation is enabled in the
Watchdog Control Register.

Event flag

31 1 0

Reserved
9-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Private Memory Region
Watchdog mode

If a software failure prevents the Watchdog Counter Register from being
refreshed, the Watchdog Counter Register reaches zero, the Watchdog
reset status flag is set and the associated RESETREQ reset request
output pin is asserted. The external reset source is then responsible for
resetting all or part of the ARM11 MPCore processor.

9.2.9 Watchdog Control Register, 0x28

Figure 9-10 shows the Watchdog Control Register format.

Figure 9-10 Watchdog Control Register format

Table 9-14 shows the Watchdog Control Register bit assignments.

WD mode
IT enable
Auto reload
Watchdog enable

31 16 15 8 7 4 3 2 1 0

Reserved Prescaler Reserved

Table 9-14 Watchdog Control Register bit assignments

Bit Name Function

[31:16] - SBZ/RAZ.

[15:8] Prescaler The prescaler modifies the clock period for the decrementing event for the Counter
Register. See Calculating timer intervals on page 9-15.

[7:4] - SBZ/RAZ.

[3] Watchdog mode 1'b0 Timer mode, default.

Writing a zero to this bit has no effect. You must use the Watchdog Disable Register to put
the watchdog into timer mode.

1'b1 Watchdog mode.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 9-19
Unrestricted Access Non-Confidential

MPCore Private Memory Region
9.2.10 Watchdog Interrupt Status Register, 0x2C

Figure 9-11 shows the Watchdog Interrupt Status Register format.

Figure 9-11 Watchdog Interrupt Status Register format

The event flag is a sticky bit that is automatically set when the Counter Register reaches
zero in timer mode. If the watchdog interrupt is enabled, Interrupt ID 30 is set as
Pending in the Interrupt Distributor after the event flag is set.

Writing a 1 to the event flag clears the bit. Trying to write a zero to the event flag or a
one when it is not set has no effect.

[2] IT Enable If set, the interrupt ID 30 is set as Pending in the Interrupt Distributor when the event flag
is set in the Watchdog Status Register.

In watchdog mode this bit is ignored.

[1] Auto-reload 1'b0 Single shot mode.

Counter decrements down to zero, sets the event flag and stops.

1'b1 Auto-reload mode.

Each time the Counter Register reaches zero, it is reloaded with the value contained in the
Load Register and then continues decrementing.

In watchdog mode this bit is ignored.

[0] Watchdog Enable Global watchdog enable:

1'b0 Watchdog is disabled and the counter does not decrement. All registers can still be
read and /or written.

1'b1 Watchdog is enabled and the counter decrements normally.

Table 9-14 Watchdog Control Register bit assignments (continued)

Bit Name Function

Event flag

31 1 0

Reserved
9-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Private Memory Region
9.2.11 Watchdog Reset Status Register, 0x30

Figure 9-12 shows the Watchdog Reset Status Register format.

Figure 9-12 Watchdog Reset Status Register format

The reset flag is a sticky bit that is automatically set when the Counter Register reaches
zero and a reset request is sent accordingly. (In watchdog mode)

The reset flag is cleared when written to 1. Trying to write a zero to the reset flag or a
one when it is not set has no effect.

This flag is not reset by normal CPU resets but has its own reset line that must not be
asserted when the CPU reset assertion is the result of a watchdog reset request. This
distinction enables software to differentiate between a normal boot sequence, reset flag
is zero, and one caused by a previous watchdog time-out, reset flag set to one.

9.2.12 Watchdog Disable Register, 0x34

The Watchdog Disable Register is a 32-bit write-only register used to switch from
watchdog to timer mode. The software must write 0x12345678 then 0x87654321
successively to the Watchdog Disable Register so that the watchdog mode bit in the
Watchdog Control Register is set to zero.

If one of the values written to the Watchdog Disable Register is incorrect or if any other
write occurs in between the two word writes, the watchdog remains in its current state.
To reactivate the Watchdog, the software must write 1 to the watchdog mode bit of the
Watchdog Control Register, see Watchdog Control Register, 0x28 on page 9-19.

Reset flag

31 1 0

Reserved
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 9-21
Unrestricted Access Non-Confidential

MPCore Private Memory Region
9-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 10
MPCore Distributed Interrupt Controller

This chapter describes the Distributed Interrupt Controller. The Distributed Interrupt
Controller collates interrupts from a number of sources and arbitrates between them.
This chapter contains the following sections:

• About the Distributed Interrupt Controller on page 10-2

• Terminology on page 10-3

• Interrupt Distributor on page 10-4

• CPU interrupt interfaces on page 10-9

• Interrupt Distributor Registers on page 10-10

• CPU Interrupt Interface Registers on page 10-20.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 10-1
Unrestricted Access Non-Confidential

MPCore Distributed Interrupt Controller
10.1 About the Distributed Interrupt Controller

The Distributed Interrupt Controller collates interrupts from a large number of sources.
It provides:

• masking of interrupts

• prioritization of the interrupts

• distribution of the interrupts to the target MP11 CPUs

• tracking the status of interrupts

• generation of interrupts by software.

The Distributed Interrupt Controller is a single functional unit that is placed in the
system alongside MP11 CPUs. This enables the number of interrupts supported in the
system to be independent of the MP11 CPU design.

The Distributed Interrupt Controller is memory-mapped. It is accessed by the MP11
CPUs using a private interface through the SCU. You can access the Distributed
Interrupt Controller using PERIPHBASE (see About the MPCore private memory
region on page 9-2).

10.1.1 Distributed Interrupt Controller clock frequency

The Distributed Interrupt Controller logic is clocked at half the frequency of the
MPCore CPUs because of power and area considerations. Reducing clock speed
reduces dynamic power consumption. The lower clock speed requires less pipelining in
the design. This means that the overall impact of the reduced clock speed on the
Distributed Interrupt Controller is kept to a minimum.

Note
 As a consequence, the minimum pulse width of signals driving external interrupt lines
is two CPU clock cycles.
10-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Distributed Interrupt Controller
10.2 Terminology

For the purposes of this document, interrupts are either asserted or nonasserted. An
asserted interrupt is one that is signalling that it is ready to be processed, or is being
processed. The transition of an interrupt from the nonasserted state to the asserted state
is described as the assertion of the interrupt. The transition of an interrupt from the
asserted state to the nonasserted state is described as the clearing of the interrupt.

From the point of view of an MP11 CPU, an interrupt can be:

Inactive An Inactive interrupt is one that is nonasserted, or which in a
multi-processing environment has been completely processed by that
MP11 CPU but can still be either Pending or Active in some of the MP11
CPUs to which it is targeted, and so might not have been cleared at the
interrupt source.

Pending A Pending interrupt is one that has been asserted, and for which
processing has not started on that MP11 CPU.

Active An Active interrupt is one that has been started on that MP11 CPU, but
processing is not complete.

An interrupt can be Pending and Active at the same time. This can happen in the case
of edge triggered interrupts, when the interrupt is asserted while the MP11 CPU has not
finished handling the first occurrence. For level-sensitive interrupts it can only happen
if software triggers it. See Interrupt Configuration Registers, 0xC00-0xC3C on
page 10-17.

Pre-emption An Active interrupt can be pre-empted when a new interrupt of higher
priority interrupts MP11 CPU interrupt processing. For the purpose of
this document, an Active interrupt can be running if it is actually being
processed, or pre-empted.

The Distributed Interrupt Controller consists of:

Interrupt Distributor

The Interrupt Distributor handles interrupt detection and interrupt
prioritization.

CPU interrupt interfaces

There is one CPU interrupt interface per MP11 CPU. The MP11 CPU
interrupt interfaces handle interrupt acknowledgement, interrupt
masking, and interrupt completion acknowledgement.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 10-3
Unrestricted Access Non-Confidential

MPCore Distributed Interrupt Controller
10.3 Interrupt Distributor

The Interrupt Distributor centralizes all interrupt sources for the ARM11 MPCore
processor before dispatching the highest priority ones to each individual MP11 CPU.

All interrupt sources are identified by a unique ID. All interrupt sources have their own
configurable priority and list of targeted CPUs, that is, a list of CPUs to which the
interrupt is sent when triggered by the Interrupt Distributor.

Note
 nFIQ interrupts are not handled by the Distributed Interrupt Controller so that nFIQ
interrupt input pins are directly routed to their respective CPU.

Interrupt sources are of the following types:

Interprocessor interrupts (IPI)

Each MP11 CPU has private interrupts, ID0-ID15, that can only be
triggered by software. These interrupts are aliased so that there is no
requirement for a requesting MP11 CPU to determine its own ID when it
deals with IPIs. The priority of an IPI depends on the receiving CPU, not
the sending CPU.

Private timer and/or watchdog interrupts.

Each MP11 CPU has its own private timer and watchdog that can
generate interrupts, using ID29 and ID30.

A legacy nIRQ pin

In legacy IRQ mode the legacy nIRQ pin, on a per CPU basis, bypasses
the Interrupt Distributor logic and directly drives interrupt requests into
the MP11 CPU. In legacy IRQ mode, if bit [0] of the CPU Interface
Control Register is 0, then no interrupts are raised based on input from
the Interrupt Distributor. If bit [0] is 1, then all interrupts are received
from the Interrupt Distributor.

When an MP11 CPU uses the Distributed Interrupt Controller (rather
than the legacy pin in the legacy mode) by enabling its own CPU
interface, the legacy nIRQ pin is treated like other interrupt lines and uses
ID31.
10-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Distributed Interrupt Controller
Hardware interrupts

Hardware interrupts are triggered by programmable events on associated
interrupt input lines. MP11 CPUs can support up to 224 interrupt input
lines. The interrupt input lines can be configured to be edge sensitive
(posedge) or level sensitive (high level). Hardware interrupts start at
ID32.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 10-5
Unrestricted Access Non-Confidential

MPCore Distributed Interrupt Controller
10.3.1 Interrupt Distributor overview

The Interrupt Distributor holds the list of Pending interrupts for each CPU, and then
selects the highest priority interrupt before issuing it to the CPU interface. Interrupts of
equal priority are resolved by selecting the lowest ID.

The Interrupt Distributor consists of a register-based list of interrupts, their priorities
and activation requirements (CPU targets). In addition the state of each interrupt on
each CPU is held in the associated state storage.

The prioritization logic is physically duplicated for each CPU to enable the selection of
the highest priority for each CPU.

The Interrupt Distributor holds the central list of interrupts, processors and activation
information, and is responsible for triggering software interrupts to processors.

The CPU Interface acknowledges interrupts and changes interrupt priority masks.

The Interrupt Distributor also contains for each interrupt the software model (1-N or
N-N) which that interrupt uses:

• With the 1-N model, an interrupt that is taken on any CPU clears the Pending
status on all CPUs.

• With the N-N model, all CPUs receive the interrupt independently. The Pending
status is cleared only for the CPU that takes it, not for the other CPUs. The N-N
model has been deprecated in the latest interrupt controller architecture.

Note
 • With the 1-N software model, the nIRQ input is asserted on all CPUs configured

in the CPU Targets Register.

• If more than one of these CPUs reads the Interrupt Acknowledge Register at the
same time, they can all acknowledge the same interrupt. The interrupt service
routine must ensure that only one of them tries to process the interrupt, with the
others returning after writing the ID to the End of Interrupt Register.

The Interrupt Distributor transmits to the CPU interrupt interfaces their highest Pending
interrupt. It receives back the information that the interrupt has been acknowledged, and
can then change the status of the corresponding interrupt. The CPU Interface also
transmits End of Interrupt Information (EOI), which enables the Interrupt Distributor to
update the status of this interrupt from Active to Inactive.

Figure 10-1 on page 10-7 shows the main blocks of the Interrupt Distributor.
10-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Distributed Interrupt Controller
Figure 10-1 Interrupt Distributor block diagram

10.3.2 Behavior of the Interrupt Distributor

When the Interrupt Distributor detects an interrupt assertion, it sets the status of the
interrupt for the targeted MP11 CPUs to Pending. Level-triggered interrupts cannot be
marked as Pending if they are already Active for at least one MP11 CPU.

For each MP11 CPU the prioritization and selection block searches for the Pending
interrupt with the highest priority. This interrupt is then sent with its priority to the CPU
Interface.

Note
 Priority zero is the highest priority. The lowest priority is priority 0xF.

Interrupt List

Interrupt
interface

Decoder

Core acknowledge and

End Of Interrupt (EOI) information

from CPU Interface

Private bus

Read/Write

Prioritization
and

selection

Priority Status

Top priority interrupts

MP11 CPU 0
Interrupt number Priority

Interrupt number Priority

Interrupt number Priority

Interrupt number Priority

MP11 CPU 1

MP11 CPU 2

MP11 CPU 3

IRQ request

to each CPU

interface
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 10-7
Unrestricted Access Non-Confidential

MPCore Distributed Interrupt Controller
When multiple Pending interrupts have the same priority, the selected interrupt is the
one with lowest ID. If there are multiple Pending software interrupts with the same ID,
the lowest MP11 CPU source is selected.

The CPU Interface returns information to the Distributor when the CPU acknowledges
(Pending to Active transition) or clears an interrupt (Active to Inactive transition). With
the given interrupt ID, the Interrupt Distributor updates the status of this interrupt
according to the information sent by the CPU Interface.

When an interrupt is triggered by the Software Interrupt Register or the Set-pending
Register, the status of that interrupt for the targeted CPU or CPUs is set to Pending. This
interrupt then has the same behavior as a hardware interrupt. The distributor does not
differentiate between software and hardware triggered interrupts.
10-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Distributed Interrupt Controller
10.4 CPU interrupt interfaces

The CPU interrupt interfaces are slaves to the MP11 CPUs. The MP11 CPU interrupt
interfaces handle interrupt priority masking and interrupt pre-emption.

A Pending interrupt is only accepted if its priority is higher than the priority mask and
is also higher than the priority of the highest priority active interrupt Active on that
MP11 CPU. If a Pending interrupt is accepted, the effect is that an interrupt request is
made to the MP11 CPU for interrupt exception entry.

If the MP11 CPU then reads its Interrupt Acknowledge Register, the CPU interrupt
interface records the priority of this interrupt and marks it as Active in the Interrupt
Distributor for that MP11 CPU.

If the interrupt is cleared before the MP11 CPU reads its Interrupt Acknowledge
Register, for example because of a priority mask change or a write to the Interrupt
Pending Clear Register, the MP11 CPU gets the interrupt ID value 1023, indicating a
spurious interrupt.

The interrupt Active to Inactive transition is triggered by an MP11 CPU writing the
completed Interrupt ID in its End of Interrupt Register.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 10-9
Unrestricted Access Non-Confidential

MPCore Distributed Interrupt Controller
10.5 Interrupt Distributor Registers

Table 10-1 shows the addresses of the registers in the Interrupt Distributor. Addresses
are given relative to the base address of the region for the Interrupt Distributor defined
by the private memory region memory map. See Table 9-1 on page 9-2. All Interrupt
Distributor Registers are byte accessible.

Table 10-1 Distributed Interrupt controller programmer’s model

Register
address

Type
Reset
value

Function Description

0x000 R/W 0x00000000 Interrupt Distributor Control
Register

See Interrupt Distributor Control
Register, 0x000 on page 10-12.

0x004 RO - Interrupt Controller Type Register See Interrupt Controller Type Register,
0x004 on page 10-12.

0x008-0x0FC Reserved

0x100 R/W 0x0000FFFF Interrupt Enable set Registers
ID0-ID31

See Interrupt Enable clear and Enable
set registers, 0x100-0x11C and
0x180-0x19C on page 10-13.

0x104-0x11C 0x00000000 Interrupt Enable set Registers ID32
and upwards

0x120-0x17C Reserved

0x180 R/W 0x0000FFFF Interrupt Enable clear Registers
ID0-ID31

See Interrupt Enable clear and Enable
set registers, 0x100-0x11C and
0x180-0x19C on page 10-13.

0x184-0x19C 0x00000000 Interrupt Enable clear Registers
ID32 and upwards

0x1A0-0x1FC Reserved

0x200-0x21C R/W 0x00000000 Interrupt Pending set Registers See Interrupt Pending clear and
Pending set registers, 0x200-0x21C
and 0x280-0x29C on page 10-14.

0x220-0x27C Reserved.

0x280-0x29C R/W 0x00000000 Interrupt Pending clear Registers See Interrupt Pending clear and
Pending set registers, 0x200-0x21C
and 0x280-0x29C on page 10-14.

0x2A0-0x2FC Reserved

0x300-0x31C RO 0x00000000 Interrupt Active Bit Registers See Active Bit Registers, 0x300-0x31C
on page 10-15
10-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Distributed Interrupt Controller
0x320-0x3FC Reserved

0x400-0x4FC R/W 0x00000000 Interrupt Priority Registers See Interrupt Priority Registers,
0x400-0x4FC on page 10-15

0x500-0x7FC Reserved

0x800-0x8FC R/W 0x00000000a Interrupt CPU targets Registers See Interrupt CPU Targets Registers,
0x800-0x8FC on page 10-16

0x900-0xBFC Reserved

0xC00 R/W 0xAAAAAAAA Interrupt Configuration Registers,
ID0-ID15

See Interrupt Configuration Registers,
0xC00-0xC3C on page 10-17

0xC04 0x28000000 Interrupt Configuration Registers,
ID29-ID31

0xC08 -0xC3C 0x00000000 Interrupt Configuration Registers,
ID32 and upwards

0xC40-0xCFC Reserved

0xD00 RO 0x00000000 Interrupt Line Level Registers
ID0-ID31

See Interrupt Line Level Registers,
0xD00-0xD1C on page 10-18

0xD04-0xD1C - Interrupt Line Level Registers ID32
and upwards

0xD20-0xEFC Reserved

0xF00 WO - Software Interrupt Register See Software Interrupt Register, 0xF00
on page 10-18

0xF00-0xFDC Reserved

Table 10-1 Distributed Interrupt controller programmer’s model (continued)

Register
address

Type
Reset
value

Function Description
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 10-11
Unrestricted Access Non-Confidential

MPCore Distributed Interrupt Controller
All registers not described in Table 10-1 on page 10-10 are Reserved and read as zero.
Writing to these registers has no effect.

10.5.1 Interrupt Distributor Control Register, 0x000

Figure 10-2 shows the format of Interrupt Distributor Control Register.

Figure 10-2 Interrupt Distributor Control Register format

Bit 0 of the control register is a global interrupt controller enable. If the value of Bit 0
is 0, no interrupts at all are sent to the CPU interrupt interfaces.

10.5.2 Interrupt Controller Type Register, 0x004

Figure 10-3 on page 10-13 shows the format of Interrupt Controller Type Register.

0xFE0 RO 0x90 Peripheral Identification Register 0 -

0xFE4 RO 0x13 Peripheral Identification Register 1

0xFE8 RO 0x04 Peripheral Identification Register 2

0xFEC RO 0x00 Peripheral Identification Register 3

0xFF0 RO 0x0D PrimeCell Identification Register 0

0xFF4 RO 0xF0 PrimeCell Identification Register 1

0xFF8 RO 0x05 PrimeCell Identification Register 2

0xFFC RO 0xB1 PrimeCell Identification Register 3

a. Except for address 0x81C. See Interrupt CPU Targets Registers, 0x800-0x8FC on page 10-16.

Table 10-1 Distributed Interrupt controller programmer’s model (continued)

Register
address

Type
Reset
value

Function Description

31 1 0

 Reserved

Enable
10-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Distributed Interrupt Controller
Figure 10-3 Interrupt Controller Type Register format

Table 10-2 shows the Interrupt Distributor Controller Type Register bit assignments.

10.5.3 Interrupt Enable clear and Enable set registers, 0x100-0x11C and 0x180-0x19C

These registers control an enable bit for each interrupt in the Interrupt Distributor. There
can be up to eight Enable clear and eight Enable set registers.

For a dedicated interrupt, if its enable bit is set to 1, the interrupt is transmitted to the
targeted CPUs if it is Pending. If the bit is set to 0, that interrupt is never sent to any
CPU. The enable bit, when set to 0, does not prevent an edge-triggered interrupt from
becoming Pending. The enable bit, when set to 0, does prevent a level sensitive interrupt
from becoming Pending only if asserted by the hardware pin, INT.

Writing a 1 to a bit in the Enable clear register means that the corresponding interrupt
enable bit is set to 0.

IT lines
number

31 8 7 5 4 0

Reserved CPU
number

Table 10-2 Interrupt Controller Type Register bit assignments

Bits Name Description

[31:8] - Reserved

[7:5] CPU number Encoding is:

b000 MPCore contains 1 MP11 CPU.

b001 MPCore contains 2 MP11 CPUs.

b010 MPCore contains 3 MP11 CPUs.

b011 MPCore contains 4 MP11 CPUs.

b1xx: Reserved for future extensions.

[4:0] IT lines number Encoding is:

b00000 No external interrupt input lines. (32 interrupt ID support)a

b00001: 32 external interrupt input lines (64 interrupt ID support).

…

b00111 224 external interrupt input lines (256 interrupt ID support)

All others are Reserved for future extension.

a. Interrupt IDs 0-31 are reserved for software and MP11 CPU private interrupts.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 10-13
Unrestricted Access Non-Confidential

MPCore Distributed Interrupt Controller
Writing a 1 to a bit in the Enable set register means that the corresponding interrupt
enable bit is set to 1.

The values read in Enable clear and Enable set registers for the same range of interrupts
are the same and represent current enabled interrupts.

For example, if you want to set the enable bit for interrupt ID 119, assuming that the
Interrupt Controller Configuration supports at least 128 IDs, you must write a one to bit
23 of the Interrupt Enable set register 0x10C.

Note
 If an interrupt is Pending or Active when its enable bit is set to 0, it remains in its current
state.

Interrupts 0-15 fields are read as one, that is, always enabled, and write to these fields
have no effect.

Notpresent interrupts (depending on the Interrupt Controller Type Register and
interrupt number field) related fields are read as zero and writes to these fields have no
effect.

10.5.4 Interrupt Pending clear and Pending set registers, 0x200-0x21C and 0x280-0x29C

These registers are used to:

• determine which interrupts are currently in Pending state for at least one MP11
CPU. (An interrupt can be Pending for some MP11 CPUs and Active or Inactive
for other MP11 CPUs).

• force some interrupts to enter Pending state by overriding interrupt assertion
detection.

• force Pending interrupts to return to Inactive state.

Writing a 1 to a bit in the Pending clear register means that the corresponding interrupt
returns from Pending to Inactive state for all MP11 CPUs. Active state is not modified.

Writing a 1 to a bit in the Pending set register means that the corresponding interrupt
enters Pending state for all MP11 CPUs in the CPU Targets Register.

The values read in Pending clear and Pending set registers for the same interrupts range
are the same and represent current Pending interrupts. If a bit is read as 1, it implies that
the interrupt is Pending for at least one MP11 CPU.
10-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Distributed Interrupt Controller
Interrupts 0 to 31 fields are aliased for each MP11 CPU, which means that MP11 CPUs
can read different values from these registers. The value read reflects all the Pending
interrupts for the accessing MP11 CPU.

All Reserved interrupts, spurious interrupt and notpresent interrupts (depending on
Interrupt Controller Type Register and interrupt number field) related fields are read as
zero and write to these fields has no effect.

Writing to IT0 to IT15 related fields has no effect. These interrupts can only be triggered
through the Software Interrupt Register (see Software Interrupt Register, 0xF00 on
page 10-18).

10.5.5 Active Bit Registers, 0x300-0x31C

The Active Bit Registers are used to determine which interrupts are currently Active (bit
read as 1) on at least one MP11 CPU.

Interrupts 0 to 31 fields are aliased for each MP11 CPU, which means that MP11 CPUs
can read different values from these registers. The value read reflects all the Active
interrupts for the accessing MP11 CPU.

10.5.6 Interrupt Priority Registers, 0x400-0x4FC

Interrupt Priority Registers store the priority of an individual interrupt. There can be up
to 64 Interrupt Priority Registers. Figure 10-4 shows the format of these registers.

Figure 10-4 Interrupt Priority Registers format

The first four registers are aliased for each MP11 CPU, that is, the priority set for
ID0-15 and ID29-31 can be different for each MP11 CPU. The priority of IPIs ID0-15
depends on the receiving CPU, not the sending CPU.

All Reserved interrupts, spurious interrupts, and not present interrupts (depending on
the Interrupt Controller Type Register Interrupt number field) related fields are read as
zero and writes to these fields have no effect.

Note
 • Priority zero is the highest priority. The lowest priority is priority 0xF.

SBZ SBZ

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SBZ SBZ

ID n+3 Priority ID n+2 Priority ID n+PriorityID n+1 Priority
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 10-15
Unrestricted Access Non-Confidential

MPCore Distributed Interrupt Controller
• One consequence of the strict comparison is that a Pending interrupt with the
lowest possible priority, 0xF, never causes the assertion of an interrupt request to
MP11 CPUs, permitting an extra level of interrupt enabling.

10.5.7 Interrupt CPU Targets Registers, 0x800-0x8FC

These registers store the list of MP11 CPUs for which an interrupt can be Pending. Each
bit in the MP11 CPU Target Registers refers to one MP11 CPU. For example, value 0x3
means that the interrupt is sent to MP11 CPU 0 and MP11 CPU 1. Interrupt target
registers are ignored in cases of software triggered interrupts.

There can be up to 64 interrupt MP11 CPU Targets Registers. Figure 10-5 shows the
format of the interrupt MP11 CPU Targets Registers.

Figure 10-5 Interrupt CPU Targets Registers format

For IT29, IT30, and IT31, values read in corresponding fields depend on accessing the
MP11 CPU because these interrupt sources are private.

• For MP11 CPU 0, CPU targets 29, 30, and 31 are read as 0x1. Writes are ignored

• For MP11 CPU 1 (if present), CPU targets 29, 30, and 31 are read as 0x2. Writes
are ignored

• For MP11 CPU 2 (if present), CPU targets 29, 30, and 31 are read as 0x4. Writes
are ignored

• For CPU 3 (if present), CPU targets 29, 30, and 31 are read as 0x8. Writes are
ignored

For IT0-IT28, these fields are ignored. They are read as zero and writes are ignored.
Targeted CPUs for software triggered interrupts can only be set through the Software
Interrupt Registers.

Modifying a CPU target list has no influence on a Pending or Active interrupt, but takes
effect on a subsequent assertion of the interrupt.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SBZ SBZ SBZ SBZ

IT n+1
CPU

Targets

IT n
CPU

Targets

IT n+2
CPU

Targets

IT n+3
CPU

Targets
10-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Distributed Interrupt Controller
All reserved and not-present interrupts related fields are read as zero and writes to these
fields have no effect.

10.5.8 Interrupt Configuration Registers, 0xC00-0xC3C

Interrupt Configuration Registers define the assertion condition and the software model
of each interrupt. There can be up to 16 Interrupt Configuration Registers. Figure 10-6
shows their format.

Figure 10-6 Interrupt Configuration Registers format

Table 10-3 shows the individual ITn encoding for bit 1 and bit 0 of each bit pair.

All Reserved interrupts, spurious interrupts, and not present interrupts (depending on
the Interrupt Controller Type Register Interrupt number field) related fields are read as
zero and writes to these fields have no effect.

For ID0-ID15, bit 1 of the configuration pair is always read as one, that is, rising edge
sensitive.

For ID0-ID15, bit 0 (software model) can be configured and applies to the interrupts
sent from the writing MP11 CPU.

For ID29, and ID30, the configuration pair is always read as b10, that is rising edge
sensitive and N-N software model because these IDs are allocated to timer and
watchdog interrupts that are CPU-specific.

ITn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ITn
+
15

ITn
+
14

ITn
+
13

ITn
+
12

ITn
+
11

ITn
+
10

ITn
+
9

ITn
+
8

ITn
+
7

ITn
+
6

ITn
+
5

ITn
+
4

ITn
+
3

ITn
+
2

ITn
+
1

Table 10-3 Interrupt line encodings for bits 1 and 0

IT bit Value Meaning

IT bit [1] 0 The interrupt line is level high active.

1 The interrupt line is rising edge sensitive.

IT bit [0] 0 The interrupt line uses the N-N software model.

1 The interrupt line uses the 1-N software model.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 10-17
Unrestricted Access Non-Confidential

MPCore Distributed Interrupt Controller
For ID31, the configuration pair is a Reserved field, and is read as zero, because this ID
is allocated to the legacy nIRQ pin which is always level low active whether the
Interrupt Controller is active or not.

10.5.9 Interrupt Line Level Registers, 0xD00-0xD1C

The Interrupt Line Level Registers reflect the actual level of signals attached to the
hardware interrupt lines at MPCore top level (INT pins). The format is one bit per
interrupt line.

The Interrupt Line Level Registers are read-only. For ID0-ID31, bits are always read as
zero because there is no physical line for the corresponding interrupts. For ID32 and
upwards, the value 0 indicates the interrupt line is LOW and the value 1 indicates the
interrupt line is HIGH. The value of the register reflects the interrupt line value before
it is prioritized.

10.5.10 Software Interrupt Register, 0xF00

The Software Interrupt Register is a write-only register that is used to trigger an
interrupt (identified with its ID) to a list of MP11 CPUs. Figure 10-7 shows the
Software Interrupt Register format.

Figure 10-7 Software Interrupt Register format

MP11 CPU target list can be different from the one defined in CPU Targets List Register
for the specified interrupt ID. Table 10-4 on page 10-19 shows the Software Interrupt
Register bit assignments.

Note
 Bits [23:20] are SBZ in the ARM11 MPCore because this processor only has a
maximum of four CPUs.

Interrupt ID

31 26 25 24 23 16 15 10 9 0

SBZ

CPU target list

SBZ

Target list filter

20 19

SBZ
10-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Distributed Interrupt Controller
Table 10-4 Software Interrupt Register bit assignments

Bit Value Meaning

[31:26] SBZ -

[25:24] Target list filter Controls the filtering that the Distributor performs on software interrupts as follows:

b00 = the Distributor sends the interrupt to CPUs that the CPU target list field specifies

b01 = the Distributor sends the interrupt to all CPUs except the CPU that requested the
interrupt

b10 = the Distributor sends the interrupt to the CPU that requested the interrupt

b11 = reserved.

[23:20] SBZ -

[19:16] CPU target list Selects which CPUs the Distributor signals a software interrupt to, when Target list filter is
set to b00. Each bit selects the following CPU interface:

Bit [16] = 1 Distributor sends the interrupt to CPU0.

Bit [17] = 1 Distributor sends the interrupt to CPU1.

Bit [18] = 1 Distributor sends the interrupt to CPU2.

Bit [19] = 1 Distributor sends the interrupt to CPU3.

In case a CPU is not present, setting a 1 for that specific CPU has no effect.

[15:10] SBZ -

[9:0] Interrupt ID Triggering an interrupt with an ID bigger than the number of supported interrupts has no
effect.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 10-19
Unrestricted Access Non-Confidential

MPCore Distributed Interrupt Controller
10.6 CPU Interrupt Interface Registers

Each MP11 CPU can access its own CPU interrupt interface at the same address for
software coherency through all MP11 CPUs. The SCU is responsible for redirecting
MP11 CPU access to the correct MP11 CPU interrupt interface depending on its ID.

For debug purposes, individual MP11 CPU interrupt interfaces can be addressed by any
MP11 CPU because the register range is duplicated in the SCU memory map.

All registers of the MP11 CPU interrupt interfaces must be accessed by 32-bit
transactions only. Table 10-5 shows the MP11 CPU Interrupt Interface Registers.

10.6.1 CPU Interface Control Register, 0x00

Figure 10-8 on page 10-21 shows the format of CPU Interface Control Register.

Table 10-5 MP11 CPU Interrupt Interface Registers

Address
offset

Type
Reset
value

Function Reference

0x00 R/W 0x00000000 Control Register See CPU Interface Control Register, 0x00.

0x04 R/W 0x000000F0 Priority Mask Register See Priority Mask Register, 0x04 on
page 10-21.

0x08 R/W 0x00000003 Binary Point Register See Binary Point Register, 0x08 on
page 10-22.

0x0C RO 0x000003FF Interrupt Acknowledge Register See Interrupt Acknowledge Register, 0x0C
on page 10-22.

0x10 WO - End of Interrupt Register See End of Interrupt (EOI) Register, 0x10
on page 10-23.

0x14 RO 0x000000F0 Running Priority Register See Running Priority Register, 0x14 on
page 10-23.

0x18 RO 0x000003FF Highest Pending Interrupt Register See Highest Pending Interrupt Register,
0x18 on page 10-24.

Others - - Reserved -
10-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Distributed Interrupt Controller
Figure 10-8 CPU Interface Control Register format

Bit [0] is a CPU interface enable. If this bit is 0, no interrupt requests are made to the
dedicated MP11 CPU even if there are Pending interrupts for that MP11CPU in the
Interrupt Distributor. External nIRQ input for the specified core is the only interrupt
input. If this bit is 1, all interrupts are received from the Interrupt Distributor. External
nIRQ is routed to the distributor as INT31.

10.6.2 Priority Mask Register, 0x04

The priority mask is used to prevent interrupts from being sent to the MP11 CPU. The
CPU Interface asserts an interrupt request to an MP11 CPU if the priority of the highest
Pending interrupt sent by the Interrupt Distributor is strictly higher than the mask set in
the Priority Mask Register. Figure 10-9 shows the Priority Mask Register bit format.

Figure 10-9 Priority Mask Register format

Table 10-6 shows the Priority Mask Register bit assignments.

One consequence of the strict comparison is that a Pending interrupt with the lowest
possible priority, 0xF, never causes the assertion of an interrupt request to MP11 CPUs,
permitting an extra level of interrupt enabling.

1

Reserved

31 0

Enable

SBZ

31 8 7 4 3 0

SBZ Priority
mask

Table 10-6 Priority Mask Register bit assignments

Bits Name Meaning

[31:8] - SBZ

[7:4] Priority Mask Priority mask values

0xF Interrupts with priority 0x0-0xE are not masked.

0x0 All interrupts are masked.

[3:0] - SBZ
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 10-21
Unrestricted Access Non-Confidential

MPCore Distributed Interrupt Controller
10.6.3 Binary Point Register, 0x08

The Binary Point Register is used to determime whether a new interrupt pre-empts a
currently Active one, using only part, or none of the priority level . Figure 10-10 shows
the Binary Point Register format.

Figure 10-10 Binary Point Register format

Table 10-7 describes the meanings of the binary point bit values.

Trying to write a value not listed in Table 10-7 has the same effect as writing b011.

10.6.4 Interrupt Acknowledge Register, 0x0C

The Interrupt Acknowledge Register is a read-only register. The Interrupt Acknowledge
Register is used to determine the source of the interrupt request received by an MP11
CPU. If no interrupt is Pending then the Interrupt ID returned is 1023, spurious
interrupt. Figure 10-11 on page 10-23 shows the Interrupt Acknowledge Register
format.

Reserved

31 3 2 1 0

Binary point

Table 10-7 Binary point bit values assignment

Bit value Meaning

b011 All priority bits are compared for pre-emption.

b100 Only bits [7:5] of priority are compared for pre-emption.

b101 Only bits [7:6] of priority are compared for pre-emption.

b110 Only bit [7] of priority is compared for pre-emption.

b111 No pre-emption is performed.
10-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MPCore Distributed Interrupt Controller
Figure 10-11 Interrupt Acknowledge Register format

Table 10-8 shows the Interrupt Acknowledge Register bit assignments.

10.6.5 End of Interrupt (EOI) Register, 0x10

This write-only register is used when the software finishes handling an interrupt. The
End of Interrupt Register has the same format as the Interrupt Acknowledge Register
shown in Figure 10-11.

10.6.6 Running Priority Register, 0x14

This read-only register contains the priority level of the last acknowledged and not
completed interrupt on this MP11CPU. Figure 10-12 shows the format of this register.

Figure 10-12 Running Priority Register format

0

Reserved Interrupt ID

31 13 12 10

CPU source ID

9

Table 10-8 Interrupt Acknowledge Register bit assignments

Bit Name Function

[31:13] - SBZ/RAZ

[12:10] CPU Source ID CPU source ID depends on Interrupt ID field:

If the Interrupt ID field is 0-15, it contains the ID of the CPU that requested the IPI.

In all other cases, the CPU source ID field is read as zero and can be ignored.

[9:0] Interrupt ID Interrupt Identifier

SBZ

31 8 7 4 3 0

Reserved Priority
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 10-23
Unrestricted Access Non-Confidential

MPCore Distributed Interrupt Controller
10.6.7 Highest Pending Interrupt Register, 0x18

The Highest Pending Interrupt Register contains the Interrupt ID (and CPU source ID
as appropriate) of the highest pending interrupt being presented to the CPU Interface by
the Interrupt Distributor. If no interrupt is Pending then the Interrupt ID returned is
1023, spurious interrupt.

The format of this register is the same as the Interrupt Acknowledge Register shown in
Figure 10-11 on page 10-23.

Note
 Unlike the Interrupt Acknowledge Register, reading the Highest Pending Interrupt
Register does not make the corresponding interrupt Active.
10-24 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 11
Clocking, Resets, and Power Management

This chapter describes the clocking and reset options available for ARM11 MPCore
processors. It contains the following sections:

• Clocking on page 11-2

• Reset on page 11-3

• Reset modes on page 11-4

• About power consumption control on page 11-6

• Individual MP11 CPU power control on page 11-7

• IEM support on page 11-11

• Debug on page 11-13.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 11-1
Unrestricted Access Non-Confidential

Clocking, Resets, and Power Management
11.1 Clocking

The ARM11 MPCore processor has one functional clock input, CLK. All four MP11
CPUs, and the SCU is clocked with a distributed version of CLK. The Distributed
Interrupt Controller, and private timers and watchdog are clocked with a divided version
of CLK. The ic_clk input is generated by enabling CLK one cycle out of two.

11.1.1 Synchronous clocking

The ARM11 MPCore processor does not have any asynchronous interfaces. So, all the
bus interfaces and the interrupt signals must be synchronous with reference to CLK.
The fact that the Distributed Interrupt Controller is clocked at half the clock frequency
implies that all the interrupt signals entering the ARM11 MPCore processor must last
at least two clock cycles.

The AXI bus clock domain cannot run at higher speeds than the core.

The AXI bus clock domain can be run at n:1 (AXI:Core) ratio to CLK using the
ACLKEN signal, where n is the AXI clock period. For more information, see
Figure 8-2 on page 8-9.
11-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Clocking, Resets, and Power Management
11.2 Reset

The ARM11 MPCore processor has the following reset inputs:

nSCURESET The nSCURESET signal is the main processor reset that
initializes the majority of the ARM11 MPCore processor logic,
except MP11 CPU logic.

nCPURESET[3:0] The nCPURESET[3:0] signals are the main CPU resets that
initialize the majority of the MP11 CPU logic, except the CP14
debug logic. There is one reset per MP11 CPU.

nWDRESET[3:0] The nWDRESET[3:0] signals are used to reset the watchdog
reset status flag. These resets must all be asserted for power-on
reset but not if one MPCore reset assertion is caused by a
watchdog reset request.

DBGnTRST The DBGnTRST signal is the DBGTAP reset.

nPORESET The nPORESETsignal is the power-on reset that initializes the
CP14 debug logic. See CP14 debug instructions on page 12-26 for
details.

All of these are active-LOW signals that reset logic in the ARM11 MPCore processor.
You must take care when designing the logic to drive these reset signals.

The RESETREQ[3:0] output pins can be used to trigger the reset assertion for one or
multiple MP11 CPUs. RESETREQ is asserted when a private MP11 CPU watchdog
counter decrements down to zero (when in watchdog mode), signalling a potential
software error.

Note
 Resets can be asynchronously asserted (set LOW), but must be synchronously released
(set HIGH).
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 11-3
Unrestricted Access Non-Confidential

Clocking, Resets, and Power Management
11.3 Reset modes

The reset signals present in the ARM11 MPCore processor design enable you to reset
different parts of the design independently. Table 11-1 shows the reset signals, and the
combinations and possible applications that you can use them.

Note
 For any combination not in Table 11-1, the behavior is architecturally Unpredictable.

11.3.1 Power-on reset

You must apply power-on or cold reset to the ARM11 MPCore processor when power
is first applied to the system.

It is recommended that you assert the reset signals for at least three CLK cycles to
ensure correct reset behavior. Adopting a 3-cycle reset eases the integration of other
ARM parts into the system.

It is not necessary to assert DBGnTRST on power-up.

11.3.2 Individual power-on reset

Individual power-on-reset or warm reset initializes the majority of the MP11 CPU,
excluding the MP11 CPU DBGTAP controller and the EmbeddedICE-RT logic. This is
typically used for resetting a system that has been operating for some time, for example,
bringing the MP11 CPU out of shutdown or dormant mode.

Table 11-1 Reset modes

Mode nTRST nSCURESET nPORESET[3:0] nWDRESET[3:0] nCPURESET[3:0]

Power-on reset x 0 All 0 All 0 All 0

Individual power-on
reset

x 1 [n] = 0 [n] = 0 [n] = 0

Soft reset x 1 All 1 [n] = 0 [n] = 0

DBGTAP reset 0 x x x x

Normal operation x 1 1 1 1
11-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Clocking, Resets, and Power Management
It is strongly recommended that if one MP11 CPU must be reset as a result of a
watchdog timeout, the entire ARM11 MPCore processor is reset. That is, all present
MP11 CPUs, the SCU, and the Distributed Interrupt Controller must be reset to prevent
any potential system deadlock caused by an MP11 CPU being reset while it performed
a transaction on the memory system.

11.3.3 Soft reset

You can use a soft reset to individually reset the MP11 CPU without resetting the
CPU14 debug logic.

11.3.4 DBGTAP reset

DBGTAP reset initializes the state of the MP11 CPU DBGTAP controller. DBGTAP
reset is typically used by the RealView™ ICE module for hot connection of a debugger
to a system.

DBGTAP reset enables initialization of the DBGTAP controller without affecting the
normal operation of the ARM11 MPCore processor.

11.3.5 Normal operation

During normal operation, neither processor reset nor power-on reset is asserted. If the
DBGTAP port is not used, the value of DBGnTRST is irrelevant.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 11-5
Unrestricted Access Non-Confidential

Clocking, Resets, and Power Management
11.4 About power consumption control

The features of the ARM11 MPCore processor that improve energy efficiency include:

• accurate branch and sub-routine return prediction, reducing the number of
incorrect instruction fetch and decode operations

• use of physically addressed caches, which reduces the number of cache flushes
and refills, saving energy in the system

• the use of MicroTLBs reduces the power consumed in translation and protection
lookups each cycle

• the caches use sequential access information to reduce the number of accesses to
the tag RAMs and to unwanted data RAMs.

In the ARM11 MPCore processor extensive use is also made of gated clocks and gates
to disable inputs to unused functional blocks. Only the logic actively in use to perform
a calculation consumes any dynamic power.
11-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Clocking, Resets, and Power Management
11.5 Individual MP11 CPU power control

Place holders for level-shifters and clamps are inserted around each MP11 CPU such
that implementation of different power domains can be eased. It is the responsibility of
software to signal to the Snoop Control Unit and the Distributed Interrupt Controller
that an individual MP11 CPU will be shut-off such that the MP11 CPU can be seen as
non-existent in the cluster.

The debug scan chain of such non-visible MP11 CPUs must be bypassed so that all
other powered CPUs can still be accessed.

Each MP11 CPU can be in one of the following modes:

Run mode Everything is clocked and powered up.

WFI mode CPU clock is stopped. Only logic required for wake-up is still
active.

Dormant mode Everything is powered off except RAM arrays that are in retention
mode.

Shutdown mode Everything is powered off.

Table 11-2 shows the individual power modes.

Entry to dormant or shutdown mode must be controlled through an external power
controller. The CPU Status Register in the SCU is used in conjunction with CPU WFI
entry flag to signal to the power controller which power domain it can cut, using the
PWRCTL bus (see SCU CPU Status Register on page 9-7).

Table 11-2 MP11 CPU power modes

Mode
MP11 CPU
logic

RAM arrays Wake-up mechanism

Run mode Powered-up

Everything
clocked

Powered-up N/A.

WFI/WFE Powered-up

Only wake-up
logic clocked

Powered-up Wake-up on interrupts (external or timer/WD).

L1 memory system only wake-up in case of SCU
coherency request.

Dormant Powered-off Retention
state/voltage

External wake-up event to power controller.

Shutdown Powered-off Powered-off External wake-up event to power controller.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 11-7
Unrestricted Access Non-Confidential

Clocking, Resets, and Power Management
11.5.1 Run mode

Run mode is the normal mode of operation in which all of the functionality of the core
is available.

11.5.2 Wait For Interrupt (WFI/WFE) mode

Wait For Interrupt mode disables most of the clocks of a CPU, while keeping its logic
powered-up. This reduces the power drawn to the static leakage current, plus a tiny
clock power overhead required to enable the device to wake up from the WFI state. The
transition from the WFI mode to the run mode is caused by:

• an interrupt, masked or unmasked

• a debug request, regardless of whether debug is enabled

• a reset.

The debug request can be generated by an externally generated debug request, using the
EDBGRQ pin on the targeted MP11 CPU, or from a Debug Halt instruction issued to
the MP11 CPU through the debug scan chains.

Entry into WFI mode is performed by executing the WFI instruction. To ensure that the
memory system is not affected by the entry into the Standby state, the following
operations are performed:

• A Data Synchronization Barrier, to ensure that all explicit memory accesses
occurred in program order before the WFI have completed. This avoids any
possible deadlocks that can cause in a system where memory access triggers or
enables an interrupt that the core is waiting for.

• Any other memory accesses that have been started at the time that the WFI
instruction is executed are completed as normal. This ensures that the Level 2
memory system does not see any disruption caused by the WFI instruction.

• The debug channel remains active throughout a WFI.

11.5.3 Dormant mode

Dormant mode is designed to enable the core to be powered down, while leaving the
caches powered up and maintaining their state.

The RAM blocks that are to remain powered up must be implemented on a separate
power domain, and there is a requirement to clamp all of the inputs to the RAMs to a
known logic level (with the chip enable held inactive). This clamping is not
implemented in gates as part of the default synthesis flow because it can contribute to a
11-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Clocking, Resets, and Power Management
tight critical path. Implementations with dormant mode must add these clamps around
the RAMs, either as explicit gates in the RAM power domain, or as pull-down
transistors that clamp the values while the core is powered down.

The RAM blocks that must remain powered up during dormant mode are:

• all data RAMs associated with the cache

• all tag RAMs associated with the cache

• all dirty RAMs associated with the cache.

Before entering dormant mode, the state of the MP11 CPU, excluding the contents of
the RAMs that remain powered up in dormant mode, must be saved to external memory.
These state saving operations must ensure that the following occur:

• All ARM registers, including CPSR and SPSR registers are saved.

• All CP15 registers are saved.

• All debug-related state must be saved.

• MP11 CPU must correctly set the CPU Status Register in the SCU so that it enters
dormant mode.

• A Data Synchronization Barrier instruction is executed to ensure that all state
saving has been completed.

• The MP11 CPU then communicates with the power controller that it is ready to
enter dormant mode by performing a WFI instruction so that power control output
reflects the value of SCU CPU Status Register (see SCU CPU Status Register on
page 9-7).

• On entry into dormant mode, the Reset signal to the targeted MP11 CPU must be
asserted by the external power control mechanism.

Transition from Dormant state to Run state is triggered by the external power controller.
The external power controller must assert reset to the MP11 CPU until the power is
restored. After power is restored, the core leaves reset, and by interrogating the power
control register in SCU, can determine that the saved state must be restored.

11.5.4 Shutdown mode

Shutdown mode has the entire device powered down, and all state, including cache,
must be saved externally by software. The part is returned to the run state by the
assertion of reset. This state saving is performed with interrupts disabled, and finishes
with a Data Memory Barrier (DMB) operation. The MP11 CPU then communicates
with a power controller that the device is ready to be powered down in the same manner
as when entering dormant mode.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 11-9
Unrestricted Access Non-Confidential

Clocking, Resets, and Power Management
11.5.5 Communication to the Power Management Controller

Communication between the ARM11 MPCore processor and the external Power
Management Controller can be performed using the PWRCTLOn MPCore output
signals and MPCore input clamp signals.

PWRCTLOn MPCore output signals

These signals constrain the external Power Management Controller. The
value of PWRCTLOn depends on the value of the SCU CPU Status
Register (see SCU CPU Status Register on page 9-7). The SCU CPU
Status Register value is only copied on PWRCTLOn after the CPU
signals that it is ready to enter low power mode by executing a WFI
instruction and subsequent STANDBYWFI pin assertion.

MPCore input signals

BISTCLAMP, DEBUGCLAMP, CPUCLAMP[3:0], and
RAMCLAMP[4:0] are used by the external Power Management
Controller to isolate MPCore power domains from one another before
they are turned off. These signals are only meaningful if the ARM11
MPCore processor has been implemented with level shifters and power
domain clamps designed in.
11-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Clocking, Resets, and Power Management
11.6 IEM support

The IEM infrastructure is intended to be supported at the system level to enable the end
user to choose at which level in the SoC to separate different power domains.

There are placeholders between MPCore logic and RAM arrays so that implementation
of level shifters for these parts can be on a different power domain.

11.6.1 MPCore voltage domains

The ARM11 MPCore processor has up to ten voltage domains:

• four voltage domains for MP11 CPUs logic cells

• four voltage domains for MP11 CPUs caches and TLB RAMs

• one voltage domain for SCU tag RAMs

• one voltage domain for remaining logic, the SCU logic cells, and private
peripherals.

Figure 11-1 on page 11-12 shows all the voltage domains and where placeholders are
inserted for voltage domain isolation.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 11-11
Unrestricted Access Non-Confidential

Clocking, Resets, and Power Management
Figure 11-1 ARM11 MPCore processor power management

VRAM3 VRAM4 VRAM5VRAM2

VRAM1

MPCore Multiprocessor

MP11CPU 0 MP11CPU2 MP11CPU3

Snoop Control Unit (SCU)

Supports 1-4 MP11 CPUs

Supports 1 or 2 AXI master ports

Distributed Interrupt Controller and local peripherals
Supports 1-4 MP11 CPUs

Supports 16 - 1024 Interrupts

Interrupts

mp11_noram
RAM

mp11_noram
RAM

LS/

Clamp

mp11_noram
RAM

mp11_noram
RAM

LS/

Clamp

LS/

Clamp

LS/

Clamp

LS/

Clamp

Vcore1

RAM

Vcore2

Vcore1

Vcore3 Vcore4 Vcore5

MP11CPU1

VFPVFP VFP VFP

Level shifter (LS) and clamp

control

Vcore1

Clamp

Vcore1

Clamp

Vcore1

Clamp

Vcore1

Clamp

Clamp
Vcore1

Clamp
Vcore1

Clamp
Vcore1

Clamp
Vcore1

Debug and

miscellaneous signals

MBIST
Vcore1

Clamp
Vcore1

Clamp
VSoC

Private

Peripheral

Bus
11-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Clocking, Resets, and Power Management
11.7 Debug

All MP11 CPUs are independent from a debug point of view. They can each be
independently put into debug state or independently started from debug state.

DBGACK and DBGREQ signals are provided for each MP11 CPU so that external
logic can be added to synchronize MP11 CPUs debug state entry. This can be useful to
help debug of SMP software running on multiple MP11 CPUs.

A possible debug synchronization policy is:

• Whenever one MP11 CPU running in SMP mode enters debug, DBGACK is
HIGH, all the remaining MP11 CPUs running in SMP mode receive an external
debug request through their DBGREQ pin. This ensures that the SMP cores enter
debug at almost the same time, on the boundary of two instructions.

• To exit from debug state, the Restart instruction must be scanned into all stopped
MP11 CPUs. When the state machines enter Run-Test/Idle state, normal
operations resume. When Run-Test/Idle state is entered, all the processors resume
operation simultaneously.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 11-13
Unrestricted Access Non-Confidential

Clocking, Resets, and Power Management
11-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 12
Debug

This chapter contains information about the MPCore debug unit to assist the
development of application software, operating systems, and hardware. It contains the
following sections:

• Debug systems on page 12-2

• About the debug unit on page 12-4

• Debug registers on page 12-6

• CP14 registers reset on page 12-25

• CP14 debug instructions on page 12-26

• Debug events on page 12-29

• Debug exception on page 12-33

• Debug state on page 12-35

• Debug communications channel on page 12-39

• Debugging in a system with TLBs on page 12-40

• Monitor debug-mode debugging on page 12-41

• Halting debug-mode debugging on page 12-47

• External signals on page 12-49.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-1
Unrestricted Access Non-Confidential

Debug
12.1 Debug systems

The ARM11 MPCore processor forms one component of a debug system that interfaces
from the high-level debugging performed by you, to the low-level interface supported
by the ARM11 MPCore processor. Figure 12-1 shows a typical system.

Figure 12-1 Typical debug system

This typical system has three parts:

• The debug host

• The protocol converter

• The MP11 CPU on page 12-3.

12.1.1 The debug host

The debug host is a computer, for example a personal computer, running a software
debugger such as RealView™ Debugger. The debug host enables you to issue high-level
commands such as setting a breakpoint at a certain location, or examining the contents
of a memory address.

12.1.2 The protocol converter

The debug host sends messages to the debug target using an interface such as Ethernet.
The messages broadcast over this connection must be converted to the interface signals
of the ARM11 MPCore processor. A device such as RealView ICE is required to convert
between the two protocols.

Host computer running RealView™ DebuggerDebug
host

for example, RealView™ ICE

Development system
containing ARM11 MPCore
Processor

Debug
target

Protocol
converter
12-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
See Appendix D Scan chain ordering with RVI for information on RealView ICE and
scan chain ordering.

12.1.3 The MP11 CPU

The MP11 CPU, with debug unit, is the lowest level of the system. The debug
extensions enable you to:

• stall program execution

• examine its internal state and the state of the memory system

• resume program execution.

The debug host and the protocol converter are system-dependent.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-3
Unrestricted Access Non-Confidential

Debug
12.2 About the debug unit

The MPCore debug unit assists in debugging software running on the ARM11 MPCore
processor. You can use an MPCore debug unit, in combination with a software debugger
program, to debug:

• application software

• operating systems

• hardware systems based on an ARM processor.

The debug unit enables you to:

• stop program execution

• examine and alter processor and coprocessor state

• examine and alter memory and input/output peripheral state

• restart the processor core.

You can debug software running on the ARM11 MPCore processor in the following
ways:

• Halting debug-mode debugging

• Monitor debug-mode debugging.

The MPCore debug interface is based on the IEEE Standard Test Access Port and
Boundary-Scan Architecture.

12.2.1 Halting debug-mode debugging

When the MPCore debug unit is in Halting debug-mode, the processor halts when a
debug event, such as a breakpoint, occurs. When the core is halted, an external host can
examine and modify its state using the DBGTAP.

In Halting debug-mode you can examine and alter all processor state (processor
registers), coprocessor state, memory, and input/output locations through the DBGTAP.
This mode is intentionally invasive to program execution. Halting debug-mode requires:

• external hardware to control the DBGTAP

• a software debugger to provide the user interface to the debug hardware.

See CP14 c1, Debug Status and Control Register (DSCR) on page 12-9 to learn how to
set the MPCore debug unit into Halting debug-mode.

12.2.2 Monitor debug-mode debugging

When the MPCore debug unit is in Monitor debug-mode, the processor takes a Debug
exception instead of halting. A special piece of software, a monitor target, can then take
control to examine or alter the processor state. Monitor debug-mode is essential in
12-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
real-time systems where the core cannot be halted to collect information. For example,
engine controllers and servo mechanisms in hard drive controllers that cannot stop the
code without physically damaging the components.

When debugging in Monitor debug-mode the processor stops execution of the current
program and starts execution of a monitor target. The state of the processor is preserved
in the same manner as all ARM exceptions (see the ARM Architecture Reference
Manual on exceptions and exception priorities). The monitor target communicates with
the debugger to access processor and coprocessor state, and to access memory contents
and input/output peripherals. Monitor debug-mode requires a debug monitor program
to interface between the debug hardware and the software debugger.

When debugging in Monitor debug-mode, you can program new debug events through
CP14. This coprocessor is the software interface of all the debug resources such as the
breakpoint and watchpoint registers. See CP14 c1, Debug Status and Control Register
(DSCR) on page 12-9 to learn how to set the MPCore debug unit into Monitor
debug-mode.

12.2.3 Virtual Addresses and debug

Unless otherwise stated, all addresses in this chapter are Virtual Addresses (VA) as
described in the ARM Architecture Reference Manual. For example, the Breakpoint
Value Registers (BVR) and Watchpoint Value Registers (WVR) must be programmed
with VAs.

The terms Instruction Virtual Address (IVA) and Data Virtual Address (DVA), where
used, mean the VA corresponding to an instruction address and the VA corresponding
to a data address respectively.

12.2.4 Programming the debug unit

The MPCore debug unit is programmed using CoProcessor 14 (CP14). CP14 provides:

• instruction address comparators for triggering breakpoints

• data address comparators for triggering watchpoints

• a bidirectional Debug Communication Channel (DCC)

• all other state information associated with MPCore debug.

CP14 is accessed using coprocessor instructions in Monitor debug-mode, and certain
debug scan chains in Halting debug-mode, see Chapter 13 Debug Test Access Port to
learn how to access the MPCore debug unit using scan chains.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-5
Unrestricted Access Non-Confidential

Debug
12.3 Debug registers

Table 12-1 shows definitions of terms used in register descriptions.

On a power-on reset, all the CP14 debug registers take the values indicated by the Reset
value column in the register bit field definition tables (Table 12-4 on page 12-10,
Table 12-6 on page 12-15, Table 12-9 on page 12-17, Table 12-11 on page 12-21, and
Table 12-12 on page 12-22). In these tables, - means an Undefined reset value.

12.3.1 Accessing debug registers

To access the CP14 debug registers you must set Opcode_1 and CRn to 0. The
Opcode_2 and CRm fields of the coprocessor instructions are used to encode the CP14
debug register number, where the register number is {<Opcode2>, <CRm>}.

Table 12-2 on page 12-7 shows the CP14 debug register map. All of these registers are
also accessible as scan chains from the DBGTAP.

Table 12-1 Terms used in register descriptions

Term Description

RO Read-only. Written values are ignored. However, it is written as 0 or preserved by writing the same value
previously read from the same fields on the same processor.

WO Write-only. This bit cannot be read. Reads return an Unpredictable value.

R/W Read and write.

C Cleared on read. This bit is cleared whenever the register is read.

UNP/SBZP Unpredictable or Should Be Zero or Preserved (SBZP). A read to this bit returns an Unpredictable value.
It is written as 0 or preserved by writing the same value previously read from the same fields on the same
processor. These bits are usually reserved for future expansion.

Core view This column defines the core access permission for a given bit.

External view This column defines the DBGTAP debugger view of a given bit.

R/W attributes This is used when the core and the DBGTAP debugger view are the same.
12-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
Note
 All the debug resources required for Monitor debug-mode debugging are accessible
through CP14 registers. For Halting debug-mode debugging some additional resources
are required. See Chapter 13 Debug Test Access Port.

Table 12-2 CP14 debug register map

Binary address
Register
number

CP14 debug register name Abbreviation
Opcode_2 CRm

b000 b0000 c0 Debug ID Register DIDR

b000 b0001 c1 Debug Status and Control Register DSCR

b000 bb0010-b0100 c2-c4 Reserved -

b000 b0101 c5 Data Transfer Register DTR

b000 b0110 c6 Reserved -

b000 b0111 c7 Vector Catch Register VCR

b000 b1000-b1111 c8-c15 Reserved -

b001-b011 b0000-b1111 c16-c63 Reserved -

b100 b0000-b0101 c64-c69 Breakpoint Value Registers BVRya

b0110-b111 c70-c79 Reserved -

b101 b0000-b0101 c80-c85 Breakpoint Control Registers BCRya

b0110-b1111 c86-c95 Reserved -

b110 b0000-b0001 c96-c97 Watchpoint Value Registers WVRya

b0010-b1111 c98-c111 Reserved -

b111 b0000-b0001 c112-c113 Watchpoint Control Registers WCRya

b0010-b1111 c114-c127 Reserved -

a. y is the decimal representation for the binary number CRm.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-7
Unrestricted Access Non-Confidential

Debug
12.3.2 CP14 c0, Debug ID Register (DIDR)

The Debug ID Register is a read-only register that defines the configuration of debug
registers in a system. Figure 12-2 shows the Debug ID Register format.

Figure 12-2 Debug ID Register format

The MPCore processor has 0x15110001 in this register.

Table 12-3 shows the bit assignment of the Debug ID Register.

Revision

31 28 27 24 23 20 19 16 15 8 7 4 3 0

WRP BRP Context Version UNP/SBZ Variant

Table 12-3 Debug ID Register bit functions

Bits Field Attributes Function

[31:28] WRP RO Number of Watchpoint Register Pairs:

b0000 = 1 WRP

b0001 = 2 WRPs

…

b1111 = 16 WRPs.

For the MP11 CPUs these bits are b0001 (2 WRPs).

[27:24] BRP RO Number of Breakpoint Register Pairs:

b0000 = Reserved. The minimum number of BRPs is 2.

b0001 = 2 BRPs

b0010 = 3 BRPs

…

b1111 = 16 BRPs.

For the MP11 CPUs these bits are b0101 (6 BRPs).

[23:20] Context RO Number of Breakpoint Register Pairs with context ID comparison capability:

b0000 = 1 BRP has context ID comparison capability

b0001 = 2 BRPs have context ID comparison capability

…

b1111 = 16 BRPs have context ID comparison capability.

For the MP11 CPUs these bits are b0001 (2 BRPs).

[19:16] Version RO Debug architecture version.
12-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
The values of the following fields of the Debug ID Register agree with the values in
CP15 c0, ID Register:

• DIDR[3:0] is the same as CP15 c0 bits [3:0]

• DIDR[7:4] is the same as CP15 c0 bits [23:20].

See c0, Main ID Register on page 3-11 for a description of CP15 c0, ID Register.

The reason for duplicating these fields here is that the Debug ID Register is accessible
through scan chain 0. This enables an external debugger to determine the variant and
revision numbers without stopping the core.

12.3.3 CP14 c1, Debug Status and Control Register (DSCR)

The Debug Status and Control Register contains status and configuration information
about the state of the debug system. Figure 12-3 shows the format of the Debug Status
and Control Register.

Figure 12-3 Debug Status and Control Register format

Figure 12-4 on page 12-10 shows the relationship between the core restarted bit and the
core halted bit.

[15:8] - UNP/SBZP Reserved.

[7:4] Variant RO Implementation-defined variant number. This number is incremented on
functional changes.

[3:0] Revision RO Implementation-defined revision number. This number is incremented on bug
fixes.

Table 12-3 Debug ID Register bit functions (continued)

Bits Field Attributes Function

rDTRfull
wDTRfull

UNP/SBZP

Monitor mode
Mode select

ARM

DbgAck
Interrupts

Comms

Sticky imprecise abort
UNP/SBPZ

DBGNOPWRDWN

Core restarted
Core halted

Sticky precise abort

31 30 29 28 16 15 14 13 12 11 10 9 8 7 6 5 2 1 0

UNP/SBZP Entry
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-9
Unrestricted Access Non-Confidential

Debug
Figure 12-4 Core restarted bit and core halted bit

Table 12-4 shows the bit assignment of the Debug Status and Control Register.

DSCR[1] Core restarted

DSCR[0] Core halted

Breakpoint hit in
Halting debug-mode

DBGTAP
RESTART

Breakpoint hit in
Halting debug-mode

Core in
normal
state

Core in
debug
state

Core
exiting
debug
state

Core in
normal
state

Core in
debug
state

Core exits
debug state

Table 12-4 Debug Status and Control Register bit functions

Bits Core view
External
view

Reset
value

Function

[31] UNP/SBZP UNP/SBZP - Reserved.

[30] R R 0 The rDTRfull flag:

0 = rDTR empty

1 = rDTR full.

This flag is automatically set on writes by the DBGTAP debugger to
the rDTR and is cleared on reads by the core of the same register. No
writes to the rDTR are enabled if the rDTRfull flag is set.

[29] R R 0 The wDTRfull flag:

0 = wDTR empty

1 = wDTR full.

This flag is automatically cleared on reads by the DBGTAP debugger
of the wDTR and is set on writes by the core to the same register.

[28:16] UNP/SBZP UNP/SBZP - Reserved.

[15] RW R 0 The Monitor debug-mode enable bit:

0 = Monitor debug-mode disabled

1 = Monitor debug-mode enabled.

For the core to take a debug exception, Monitor debug-mode must be
both selected and enabled (bit [14] clear and bit [15] set).
12-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
[14] R RW 0 Mode select bit:

0 = Monitor debug-mode selected

1 = Halting debug-mode selected and enabled.

[13] R RW 0 Execute ARM instruction enable bit:

0 = Disabled

1 = Enabled.

If this bit is set, the core can be forced to execute ARM instructions in
debug state using the Debug Test Access Port. If this bit is set when
the core is not in debug state, the behavior of the ARM11 MPCore
processor is Unpredictable.

[12] RW R 0 User mode access to comms channel control bit:

0 = User mode access to comms channel enabled

1 = User mode access to comms channel disabled.

If this bit is set and a User mode process tries to access the DIDR,
DSCR, or the DTR, the Undefined instruction exception is taken.
Because accessing the rest of CP14 debug registers is never possible
in User mode (see Executing CP14 debug instructions on page 12-27,
setting this bit means that a User mode process cannot access any
CP14 debug register.

[11] R RW 0 Interrupts bit:

0 = Interrupts enabled

1 = Interrupts disabled.

If this bit is set, the IRQ and FIQ input signals are inhibited.a

[10] R RW 0 DbgAck bit.

If this bit is set, the DBGACK output signal (see External signals on
page 12-49) is forced HIGH, regardless of the processor state.a

[9] R RW 0 Powerdown disable:

0 = DBGNOPWRDWN is LOW

1 = DBGNOPWRDWN is HIGH.

See External signals on page 12-49.

[8] UNP/SBZP UNP/SBZP - Reserved.

Table 12-4 Debug Status and Control Register bit functions (continued)

Bits Core view
External
view

Reset
value

Function
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-11
Unrestricted Access Non-Confidential

Debug
[7] R RC 0 Sticky imprecise Data Aborts bit:

0 = No imprecise Data Aborts occurred since the last time this bit was
cleared

1 = An imprecise Data Abort has occurred since the last time this bit
was cleared.

It is cleared on reads of a DBGTAP debugger to the DSCR.

[6] R RC 0 Sticky precise Data Abort bit:

0 = No precise Data Abort occurred since the last time this bit was
cleared

1 = An precise Data Abort has occurred since the last time this bit was
cleared.

This flag is meant to detect Data Aborts generated by instructions
issued to the processor using the Debug Test Access Port. Therefore,
if the DSCR[13] execute ARM instruction enable bit is a 0, the value
of the sticky precise Data Abort bit is Unpredictable. It is cleared on
reads of a DBGTAP debugger to the DSCR.

[5:2] RW R b0000 Method of entry bits:

b0000 = a Halt DBGTAP instruction occurred

b0001 = a breakpoint occurred

b0010 = a watchpoint occurred

b0011 = a BKPT instruction occurred

b0100 = an EDBGRQ signal activation occurred

b0101 = a vector catch occurred

b0110 = a data-side abort occurred

b0111 = an instruction-side abort occurred

b1xxx = reserved.

[1] R R 1 Core restarted bit:

0 = the processor is exiting debug state

1 = the processor has exited debug state.

After executing a DBGTAP IR instruction, the debugger polls this bit
until it is set to 1 so it knows that the IR instruction took effect. Polling
DSCR[0] until it is set to 0 is not safe because the processor could exit
debug state and re-enter it (because of other debug event) before the
debugger samples the DSCR.b

See Debug state on page 12-35 for a definition of debug state.

Table 12-4 Debug Status and Control Register bit functions (continued)

Bits Core view
External
view

Reset
value

Function
12-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
Bits [5:2] are set to indicate:

• the reason for jumping to the Prefetch or Data Abort vector

• the reason for entering debug state.

Using bits [5:2], a Prefetch Abort or a Data Abort handler determines if it must jump to
the monitor target. Additionally, a DBGTAP debugger or monitor target can determine
the specific debug event that caused the debug state or debug exception entry.

12.3.4 CP14 c5, Data Transfer Registers (DTR)

This register consists of two separate physical registers:

• the rDTR (Read Data Transfer Register)

• the wDTR (Write Data Transfer Register).

The register accessed is dependent on the instruction used:

• writes, MCR and LDC instructions, access the wDTR

• reads, MRC and STC instructions, access the rDTR.

Note
 Read and write refer to the core view.

For details of the use of these registers with the rDTRfull flag and wDTRfull flag see
Debug communications channel on page 12-39. Figure 12-5 on page 12-14 shows the
format of both the rDTR and wDTR.

[0] R R 0 Core halted bit:

0 = the processor is in normal state

1 = the processor is in debug state.

After programming a debug event, the debugger polls this bit until it
is set to 1 so it knows that the processor entered debug state. See
Debug state on page 12-35 for a definition of debug state.

a. Bits DSCR[11:10] can be controlled by a DBGTAP debugger to execute code in normal state as part of the debugging process.
For example, if the DBGTAP debugger has to execute an OS service to bring a page from disk into memory, and then return
to the application to see the effect this change of state produces, it is undesirable that interrupts are serviced during execution
of this routine.

b. See Figure 12-4 on page 12-10 for the relationship between the core restarted and halted bits.

Table 12-4 Debug Status and Control Register bit functions (continued)

Bits Core view
External
view

Reset
value

Function
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-13
Unrestricted Access Non-Confidential

Debug
Figure 12-5 DTR format

Table 12-5 shows the bit assignment of the rDTR and wDTR.

12.3.5 CP14 c7, Vector Catch Register (VCR)

The MP11 CPUs support efficient exception vector catching which is controlled by the
VCR. Figure 12-6 shows the Vector Catch Register format.

Figure 12-6 Vector Catch Register format

If one of the bits in this register is set and the corresponding vector is committed for
execution, then a Debug exception or debug state entry might be generated, depending
on the value of the DSCR[15:14] bits (see Behavior of the processor on debug events
on page 12-30). Under this model, any kind of fetch of an exception vector can trigger
a vector catch, not only the ones caused by exception entries.

The update of the VCR might occur several instruction after the corresponding MCR
instruction. It only takes effect by the next Instruction Memory Barrier (IMB).

Bits [31:8] and bit [5] are reserved.

Data

31 0

Table 12-5 Data Transfer Register bit functions

Bits
Core
view

External
view

Function

[31:0] RO WO Read data transfer register (read-only)

[31:0] WO RO Write data transfer register (write-only)

FIQ
IRQ

Reserved
Data Abort

Prefetch Abort
SWI

Undefined

Reserved

31 8 7 6 5 4 3 2 1 0

Reset
12-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
Table 12-6 shows the bit assignment of the Vector Catch Register.

12.3.6 CP14 c64-c69, Breakpoint Value Registers (BVR)

Each BVR is associated with a BCR register. BCRy is the corresponding control register
for BVRy.

A pair of breakpoint registers, BVRy/BCRy, is called a Breakpoint Register Pair (BRP).
BVR0-5 are paired with BCR0-5 to make BRP0-5.

The BVR of a BRP is loaded with an IVA and then its contents can be compared against
the IVA bus of the processor.

The breakpoint value contained in the BVR corresponds to either an IVA or a context
ID. Breakpoints can be set on:

• an IVA

• a context ID

• an IVA/context ID pair.

MPCore supports thread-aware breakpoints and watchpoints. A context ID can be
loaded into the BVR and the BCR can be configured so this BVR value is compared
against the CP15 context ID register, c13, instead of the IVA bus. Another register pair
loaded with an IVA or DVA can then be linked with the context ID holding BRP. A
breakpoint or watchpoint debug event is only generated if both the address and the
context ID match at the same time. This means that unnecessary hits can be avoided
when debugging a specific thread within a task.

Table 12-6 Vector Catch Register bit functions

Bits Attributes
Reset
value

Function
Normal
address

High vector
address

[31:8] UNP/SBZP - Reserved - -

[7] RW 0 Vector catch enable, FIQ 0x0000001C 0xFFFF001C

[6] RW 0 Vector catch enable, IRQ 0x00000008 0xFFFF0008

[5] UNP/SBZP - Reserved - -

[4] RW 0 Vector catch enable, Data Abort 0x00000010 0xFFFF0010

[3] RW 0 Vector catch enable, Prefetch Abort 0x0000000C 0xFFFF000C

[2] RW 0 Vector catch enable, SWI 0x00000008 0xFFFF0008

[1] RW 0 Vector catch enable, Undefined Instruction 0x00000004 0xFFFF0004

[0] RW 0 Vector catch enable, Reset 0x00000000 0xFFFF0000
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-15
Unrestricted Access Non-Confidential

Debug
Breakpoint debug events generated on context ID matches only are also supported.
However, if the match occurs while the processor is running in a privileged mode and
the debug logic in Monitor debug-mode, it is ignored. This is to avoid the processor
ending in an unrecoverable state.

Table 12-7 shows the breakpoint and watchpoint registers that are implemented in the
MP11 CPUs.

Table 12-8 shows the bit assignment of the context ID and the non-context ID
Breakpoint Value Registers.

When a context ID capable BRP is set for IVA comparison, BVR bits [1:0] are ignored.

Table 12-7 MPCore breakpoint and watchpoint registers

Binary address
Register
number

CP14 debug register name Abbreviation
Context ID
capable?

Opcode_2 CRm

b100 b0000-b0011 c64-c67 Breakpoint Value Registers 0-3 BVR0-3 No

b0100-b0101 c68-c69 Breakpoint Value Registers 4-5 BVR4-5 Yes

b0110-b1111 c70-c79 Reserved - -

b101 b0000-b0011 c80-c83 Breakpoint Control Registers 0-3 BCR0-3 No

b0100-b0101 c84-c85 Breakpoint Control Registers 4-5 BCR4-5 Yes

b0110-b1111 c86-c95 Reserved - -

b110 b0000-b0001 c96-c97 Watchpoint Value Registers 0-1 WVR0-1 -

b0010-b1111 c98-c111 Reserved - -

b111 b0000-b0001 c112-c113 Watchpoint Control Registers 0-1 WCR0-1 -

b0010-b1111 c114-c127 Reserved - -

Table 12-8 Breakpoint Value Registers bit functions

Context
ID capable?

Bits Attributes Description

No [31:2] RW Breakpoint address

Yes [31:0] RW Breakpoint address
12-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
12.3.7 CP14 c80-c85, Breakpoint Control Registers (BCR)

These registers contain the necessary control bits for setting:

• breakpoints

• linked breakpoints.

Figure 12-7 shows the format of the Breakpoint Control Registers.

Figure 12-7 Breakpoint Control Registers format

Table 12-9 shows the bit assignment of the Breakpoint Control Registers.

B

31 22 21 20 19 16 15 9 8 5 4 3 2 1 0

UNP/SBZP M E Linked BRP UNP/SBZP

Byte address select
UNP/SBZ

S

Table 12-9 Breakpoint Control Registers bit functions

Bits Field Attributes
Reset
value

Function

[31:22] - UNP/SBZP - Reserved.

[21] M RW (Read as 0) - 0 = Instruction Virtual Address. The corresponding BVR is
compared against the IVA bus.

1 = Context ID. The corresponding BVR is compared
against the CP15 context ID (register 13).

If this BRP does not have context ID comparison capability,
this control bit does not apply and the corresponding bit is
read as 0. See Table 12-10 on page 12-19 for details.

[20] E RW - Enable linking:

0 = linking disabled

1 = linking enabled.

When this bit is set HIGH, the corresponding BRP is
linked. See Table 12-10 on page 12-19 for details.

[19:16] Linked BRP RW - Linked BRP number. The binary number encoded here
indicates another BRP to link this one with. If a BRP is
linked with itself, it is Unpredictable if a breakpoint debug
event is generated.

[15:9] - UNP/SBZP - Reserved.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-17
Unrestricted Access Non-Confidential

Debug
[8:5] Byte address
select

RW - Byte address select. The BVR is programmed with a word
address. You can use this field to program the breakpoint so
it hits only if certain byte addresses are accessed.

b0000 = The breakpoint never hits

bxxx1= If the byte at address BVR[31:2]+0 is accessed, the
breakpoint hits

bxx1x = If the byte at address BVR[31:2]+1 is accessed, the
breakpoint hits

bx1xx = If the byte at address BVR[31:2]+2 is accessed, the
breakpoint hits

b1xxx = If the byte at address BVR[31:2]+3 is accessed, the
breakpoint hits.

This field must be set to b1111 when this BRP is
programmed for context ID comparison, that is
BCR[21:20] set to b1x. Otherwise breakpoint or
watchpoint debug events might not be generated as
expected.

Note
 These are little-endian byte addresses. This ensures that a
breakpoint is triggered regardless of the endianness of the
instruction fetch.

For example, if a breakpoint is set on a certain Thumb
instruction by setting BCR[8:5] = b0011, it is triggered if in
little-endian and IVA[1:0] is b00 or if big-endian and
IVA[1:0] is b10.

Table 12-9 Breakpoint Control Registers bit functions (continued)

Bits Field Attributes
Reset
value

Function
12-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
Table 12-10 summarizes the meaning of BCR bits [21:20].

[4:3] - UNP/SBZP - Reserved

[2:1] S RW - b00 = Reserved

b01 = Privileged

b10 = User

b11 = Either.

If this BRP is programmed for context ID comparison and
linking (BCR[21:20] is set b11), then the BCR[2:1] field of
the IVA-holding BRP takes precedence and it is Undefined
whether this field is included in the comparison or not.
Therefore, it must be set to either.

The WCR[2:1] field of a WRP linked with this BRP also
takes precedence over this field.

[0] B RW 0 Breakpoint enable:

0 = breakpoint disabled

1 = breakpoint enabled.

Table 12-9 Breakpoint Control Registers bit functions (continued)

Bits Field Attributes
Reset
value

Function

Table 12-10 Meaning of BCR[21:20] bits

BCR[21:20] Meaning

b00 The corresponding BVR is compared against the IVA bus. This BRP is not
linked with any other one. It generates a breakpoint debug event on an IVA
match.

b01 The corresponding BVR is compared against the IVA bus. This BRP is linked
with the one indicated by BCR[19:16] linked BRP field. They generate a
breakpoint debug event on a joint IVA and context ID match.

b10 The corresponding BVR is compared against CP15 Context Id Register, c13.
This BRP is not linked with any other one. It generates a breakpoint debug
event on a context ID match.

b11 The corresponding BVR is compared against CP15 Context Id Register, c13.
Another BRP (of the BCR[21:20]=b01 type), or WRP (with WCR[20]=b1),
is linked with this BRP. They generate a breakpoint or watchpoint debug
event on a joint IVA or DVA and context ID match.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-19
Unrestricted Access Non-Confidential

Debug
Note
 The BCR[8:5] and BCR[2:1] fields still apply when a BRP is set for context ID
comparison. See Setting breakpoints, watchpoints, and vector catch debug events on
page 12-41 for detailed programming sequences for linked breakpoints and linked
watchpoints.

The following rules apply to the ARM11 MPCore processor for breakpoint debug event
generation:

• The update of a BVR or a BCR can take effect several instructions after the
corresponding MCR. It takes effect by the next IMB.

• Updates of the CP15 Context ID Register c13, can take effect several instructions
after the corresponding MCR. However, the write takes place by the end of the
exception return. This is to ensure that a User mode process, switched in by a
processor scheduler, can break at its first instruction.

• Any BRP (holding an IVA) can be linked with any other one with context ID
capability. Several BRPs (holding IVAs) can be linked with the same context ID
capable one.

• If a BRP (holding an IVA) is linked with one that is not configured for context ID
comparison and linking, it is Unpredictable whether a breakpoint debug event is
generated or not. BCR[21:20] fields of the second BRP must be set to b11.

• If a BRP (holding an IVA) is linked with one that is not implemented, it is
Unpredictable if a breakpoint debug event is generated or not.

• If a BRP is linked with itself, it is Unpredictable if a breakpoint debug event is
generated or not.

• If a BRP (holding an IVA) is linked with another BRP (holding a context ID
value), and they are not both enabled (both BCR[0] bits set), the first one does not
generate any breakpoint debug event.

12.3.8 CP14 c96-c97, Watchpoint Value Registers (WVR)

Each WVR is associated with a WCR register. WCRy is the corresponding register for
WVRy.

A pair of watchpoint registers, WVRy and WCRy, is called a Watchpoint Register Pair
(WRP). WVR0-1 are paired with WCR0-1 to make WRP0-1.
12-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
The watchpoint value contained in the WVR always corresponds to a DVA.
Watchpoints can be set on:

• a DVA

• a DVA/context ID pair.

For the second case a WRP and a BRP with context ID comparison capability have to
be linked. A debug event is generated when both the DVA and the context ID pair match
simultaneously. Table 12-11 shows the bit assignment of the Watchpoint Value
Registers.

12.3.9 CP14 c112-c113, Watchpoint Control Registers (WCR)

These registers contain the necessary control bits for setting:

• watchpoints

• linked watchpoints.

Figure 12-8 shows the format of the Watchpoint Control Registers.

Figure 12-8 Watchpoint Control Registers format

Table 12-11 Watchpoint Value Registers bit functions

Bits Attributes Reset value Description

[31:2] RW - Watchpoint address

W

31 21 20 19 16 15 9 8 5 4 3 2 1 0

UNP/SBZP E Linked BRP UNP/SBZP

Byte address select

L/S S
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-21
Unrestricted Access Non-Confidential

Debug
Table 12-12 shows the bit assignment of the Watchpoint Control Registers.

Table 12-12 Watchpoint Control Registers bit functions

Bits Field Attributes
Reset
value

Function

[31:21] - UNP/SBZP - Reserved.

[20] E RW - Enable linking bit:

0 = linking disabled

1 = linking enabled.

When this bit is set, this watchpoint is linked with the context ID
holding BRP selected by the linked BRP field.

[19:16] Linked
BRP

RW - Linked BRP. The binary number encoded here indicates a context ID
holding BRP to link this WRP with.

[15:9] - UNP/SBZP - Reserved.

[8:5] Byte
address
select

RW - Byte address select. The WVR is programmed with a word address.
This field can be used to program the watchpoint so it hits only if
certain byte addresses are accessed.

b0000 = The watchpoint never hits

bxxx1= If the byte at address WVR[31:2]+0 is accessed, the
watchpoint hits

bxx1x = If the byte at address WVR[31:2]+1 is accessed, the
watchpoint hits

bx1xx = If the byte at address WVR[31:2]+2 is accessed, the
watchpoint hits

b1xxx = If the byte at address WVR[31:2]+3 is accessed, the
watchpoint hits.

Note
 These are little-endian byte addresses. This ensures that a watchpoint
is triggered regardless of the way it is accessed.

For example, if a watchpoint is set on a certain byte in memory by
doing WCR[8:5] = b0001. LDRB r0, #0x0 it triggers the watchpoint in
little-endian mode, as does LDRB r0, #x3 in legacy big-endian mode
(B bit of CP15 c1 set).
12-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
In addition to the rules for breakpoint debug event generation, see CP14 c80-c85,
Breakpoint Control Registers (BCR) on page 12-17, the following rules apply to the
ARM11 MPCore processor for watchpoint debug event generation:

• The update of a WVR or a WCR can take effect several instructions after the
corresponding MCR. It is only guaranteed to have taken effect by the next 1MB.

• Any WRP can be linked with any BRP with context ID comparison capability.
Several BRPs (holding IVAs) and WRPs can be linked with the same context ID
capable BRP.

• If a WRP is linked with a BRP that is not configured for context ID comparison
and linking, it is Unpredictable if a watchpoint debug event is generated or not.
BCR[21:20] fields of the BRP must be set to b11.

• If a WRP is linked with a BRP that is not implemented, it is Unpredictable if a
watchpoint debug event is generated or not.

[4:3] L/S RW - Load or store access. The watchpoint can be conditioned to the type
of access being done:

b00 = Reserved

b01 = Load

b10 = Store

b11 = Either.

A SWP triggers on Load, Store, or Either. A load exclusive
instruction, LDREX, triggers on Load or Either. A store exclusive
instruction, STREX, triggers on Store or Either, whether it succeeded or
not.

[2:1] S RW - Supervisor Access. The watchpoint can be conditioned to the
privilege of the access being done:

b00 = Reserved

b01 = Privileged

b10 = User

b11 = Either.

[0] W RW 0 Watchpoint enable:

0 = watchpoint disabled

1 = watchpoint enabled.

Table 12-12 Watchpoint Control Registers bit functions (continued)

Bits Field Attributes
Reset
value

Function
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-23
Unrestricted Access Non-Confidential

Debug
• If a WRP is linked with a BRP and they are not both enabled (BCR[0] and
WCR[0] set), it does not generate a watchpoint debug event.
12-24 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
12.4 CP14 registers reset

nPORESET[0], nPORESET[1], nPORESET[2],or nPORESET[3] reset all the
CP14 debug registers for MP11 CPU0, MP11 CPU1, MP11 CPU2, or MP11 CPU3
respectively (see Power-on reset on page 11-4).

This ensures that a vector catch set on the reset vector is taken when a particular
nCPURESET reset is deasserted. It also ensures that the DBGTAP debugger can be
connected when the processor is running without clearing CP14 debug setting, because
DBGnTRST does not reset these registers.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-25
Unrestricted Access Non-Confidential

Debug
12.5 CP14 debug instructions

Table 12-13 shows the CP14 debug instructions.

In Table 12-13, MRC p14,0,<Rd>,c0,c5,0 and STC p14,c5,<addressing mode> refer to the
rDTR and MCR p14,0,<Rd>,c0,c5,0 and LDC p14,c5,<addressing mode> refer to the
wDTR. See CP14 c5, Data Transfer Registers (DTR) on page 12-13 for more details.

The MRC p14,0,R15,c0,c1,0 instruction sets the CPSR flags as follows:

• N flag = DSCR[31]. This is an Unpredictable value.

• Z flag = DSCR[30]. This is the value of the rDTRfull flag.

Table 12-13 CP14 debug instructions

Binary address
Register
number

Abbreviation Legal instructions
Opcode_2 CRm

b000 b0000 0 DIDR MRC p14, 0, <Rd>, c0, c0, 0a

b000 b0001 1 DSCR MRC p14, 0, <Rd>, c0, c1,0a

MRC p14, 0, R15, c0, c1,0

MCR p14, 0, <Rd>, c0, c1,0a

b000 b0101 5 DTR (rDTR/wDTR) MRC p14, 0, <Rd>, c0, c5, 0a

MCR p14, 0, <Rd>, c0, c5, 0a

STC p14, c5, <addressing mode>

LDC p14, c5, <addressing mode>

b000 b0111 7 VCR MRC p14, 0, <Rd>, c0, c7, 0a

MCR p14, 0, <Rd>, c0, c7, 0a

b100 b0000-b1111 64-79 BVR MRC p14, 0, <Rd>, c0, cy,4ab

MCR p14, 0, <Rd>, c0, cy,4ab

b101 b0000-b1111 80-95 BCR MRC p14, 0, <Rd>, c0, cy,5ab

MCR p14, 0, <Rd>, c0, cy,5ab

b110 b0000-b1111 96-111 WVR MRC p14, 0, <Rd>, 0, cy, 6ab

MCR p14, 0, <Rd>, 0, cy, 6ab

b111 b0000-b1111 112-127 WCR MRC p14, 0, <Rd>, c0, cy, 7ab

MCR p14, 0, <Rd>, c0, cy, 7ab

a. <Rd> is any of R0-14 ARM registers.
b. y is the decimal representation for the binary number CRm.
12-26 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
• C flag = DSCR[29]. This is the value of the wDTRfull flag.

• V flag = DSCR[28]. This is an Unpredictable value.

Instructions that follow the MRC instruction can be conditioned to these CPSR flags.

12.5.1 Executing CP14 debug instructions

If the core is in debug state (see Debug state on page 12-35), you can execute any CP14
debug instruction regardless of the processor mode.

If the processor tries to execute a CP14 debug instruction that either is not in
Table 12-13 on page 12-26, or is targeted to a reserved register, such as a
non-implemented BVR, the Undefined instruction exception is taken.

You can access the DCC (read DIDR, read DSCR and read/write DTR) in User mode.
All other CP14 debug instructions are privileged. If the processor tries to execute one
of these in User mode, the Undefined instruction exception is taken.

If the User mode access to DCC disable bit, DSCR[12], is set, all CP14 debug
instructions are considered as privileged, and all attempted User mode accesses to CP14
debug registers generate an Undefined instruction exception.

When DSCR bit [14] is set (Halting debug-mode selected and enabled), if the software
running on the processor tries to access any register other than the DIDR, the DSCR, or
the DTR, the core takes the Undefined instruction exception. The same thing happens
if the core is not in any debug mode (DSCR[15:14]=b00).

This lockout mechanism ensures that the software running on the core cannot modify
the settings of a debug event programmed by the DBGTAP debugger.

Table 12-14 on page 12-28 shows the results of executing CP14 debug instructions.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-27
Unrestricted Access Non-Confidential

Debug
Table 12-14 Debug instruction execution

State when executing CP14 debug instruction: Results of CP14 debug instruction execution:

Processor
mode

Debug
state

DSCR[15:14]
(mode enabled
and selected)

DSCR[12]
(DCC User
accesses
disabled)

Read DIDR,
read DSCR
and read/
write DTR

Write
DSCR

Read/write
other
registers

x Yes xx x Proceed Proceed Proceed

User No xx 0 Proceed Undefined
exception

Undefined
exception

User No xx 1 Undefined
exception

Undefined
exception

Undefined
exception

Privileged No b00 (None) x Proceed Proceed Undefined
exception

Privileged No b01 (Halt) x Proceed Proceed Undefined
exception

Privileged No b10 (Monitor) x Proceed Proceed Proceed

Privileged No b11 (Halt) x Proceed Proceed Undefined
exception
12-28 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
12.6 Debug events

A debug event is any of the following:

• Software debug event

• External debug request signal on page 12-30

• Halt DBGTAP instruction on page 12-30.

12.6.1 Software debug event

A software debug event is any of the following:

• A watchpoint debug event. This occurs when:

— the DVA present in the data bus matches the watchpoint value

— all the conditions of the WCR match

— the watchpoint is enabled

— the linked contextID-holding BRP (if any) is enabled and its value matches
the context ID in CP15 c13.

• A breakpoint debug event. This occurs when:

— an instruction was fetched and the IVA present in the instruction bus
matched the breakpoint value

— at the same time the instruction was fetched, all the conditions of the BCR
matched

— the breakpoint was enabled

— at the same time the instruction was fetched, the linked contextID-holding
BRP (if any) was enabled and its value matched the context ID in CP15 c13

— the instruction is now committed for execution.

• A breakpoint debug event also occurs when:

— an instruction was fetched and the CP15 Context ID register c13 matched
the breakpoint value

— at the same time the instruction was fetched, all the conditions of the BCR
matched

— the breakpoint was enabled

— the instruction is now committed for execution.

• A software breakpoint debug event. This occurs when a BKPT instruction is
committed for execution.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-29
Unrestricted Access Non-Confidential

Debug
• A vector catch debug event. This occurs when:

— The instruction at a vector location was fetched. This includes any kind of
prefetch, not only the ones caused by exception entry.

— At the same time the instruction was fetched, the corresponding bit of the
VCR was set (vector catch enabled).

— The instruction is now committed for execution.

12.6.2 External debug request signal

Each MP11 CPU has an external debug request input signal, EDBGRQ. When this
signal is HIGH it causes the processor to enter debug state when execution of the current
instruction has completed. When this happens, the DSCR[5:2] method of entry bits are
set to b0100.

EDBGRQ must stay HIGH until DBGACK is asserted.

12.6.3 Halt DBGTAP instruction

The Halt mechanism is used by the Debug Test Access Port to force the core into debug
state. When this happens, the DSCR[5:2] method of entry bits are set to b0000.

12.6.4 Behavior of the processor on debug events

This section describes how the processor behaves on debug events while not in debug
state. See Debug state on page 12-35 for information on how the processor behaves
while in debug state.

When a software debug event occurs and Monitor debug-mode is selected and enabled
then a Debug exception is taken. However, Prefetch Abort and Data Abort Vector catch
debug events are ignored. This is to avoid the processor ending in an unrecoverable state
on certain combinations of exceptions and vector catches. Unlinked context ID
breakpoint debug events are also ignored if the processor is running in a privileged
mode and Monitor debug-mode is selected and enabled.

When the external debug request signal is activated, or the DBGTAP instruction is
issued and debug is enabled and the core is in a state that permits debug, the processor
enters debug state regardless of any debug-mode selected by DSCR[15:14].

When a debug event occurs and Halting debug-mode is selected and enabled and the
core is in a state when debug is permitted, then the processor enters debug state.
12-30 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
When neither Halting nor Monitor debug-mode is selected and enabled or the core is in
a state that does not permit debug, the BKPT instruction generates a Prefetch Abort
exception. Table 12-15 lists the behavior of the processor in debug events.

12.6.5 Effect of a debug event on CP15 registers

The four CP15 registers that can be set on a debug event are:

• Instruction Fault Status Register (IFSR)

• Data Fault Status Register (DFSR)

• Fault Address Register (FAR)

• Watchpoint Fault Address Register (WFAR).

They are set under the following circumstances:

• The IFSR is set whenever a breakpoint, software breakpoint, or vector catch
debug event generates a Debug exception entry. It is set to indicate the cause for
the Prefetch Abort vector fetch.

• The DFSR is set whenever a watchpoint debug event generates a Debug exception
entry. It is set to indicate the cause for the Data Abort vector fetch.

• The MP11 CPU sets the FAR to an Unpredictable value.

• The WFAR is set whenever a watchpoint debug event generates either a Debug
exception or debug state entry. It is set to the VA of the instruction that caused the
Watchpoint debug event, plus an offset dependent on the processor state.
Table 12-18 on page 12-37 shows the offsets that are used.

Table 12-15 Behavior of the processor on debug events

DSCR[15:14]
Mode
selected
and enabled

Action on software
debug event

Action on external
debug request
signal activation

Action on Halt
DBGTAP

b00 None Ignore/Prefetch Aborta Debug state entry Debug state entry

b01 Halting Debug state entry Debug state entry Debug state entry

b10 Monitor Debug exception/Ignoreb Debug state entry Debug state entry

b11 Halting Debug state entry Debug state entry Debug state entry

a. When no debug mode is selected and enabled or the core is in a state that does not permit debug, a BKPT instruction
generates a Prefetch Abort exception instead of being ignored.

b. Prefetch Abort and Data Abort vector catch debug events are ignored in Monitor debug-mode. Unlinked context ID
breakpoint debug events are also ignored if the processor is running in a privileged mode and Monitor debug-mode is
selected and enabled.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-31
Unrestricted Access Non-Confidential

Debug
Table 12-16 shows the setting of CP15 registers on debug events.

You must take care when setting a breakpoint or software breakpoint debug event inside
the Prefetch Abort or Data Abort exception handlers, or when setting a watchpoint
debug event on a data address that might be accessed by any of these handlers. These
debug events overwrite the r14_abt, SPRS_abt and the CP15 registers listed in this
section, leading to an unpredictable software behavior if the handlers did not have the
chance of saving the registers.

Table 12-16 Setting of CP15 registers on debug events

Register

Debug exception taken because of: Debug state entry because of:

A breakpoint,
software breakpoint,
or vector catch
debug event

A watchpoint
debug event

A debug event
other than a
watchpoint

A watchpoint
debug event

IFSR Cause of Prefetch Abort
exception handler entry

Unchanged Unchanged Unchanged

DFSR Unchanged Cause of Data Abort
exception handler entry

Unchanged Unchanged

FAR Unchanged Unpredictable value Unchanged Unchanged

WFAR Unchanged Address of the
instruction causing the
watchpoint debug event

Unchanged Address of the
instruction causing the
watchpoint debug
event
12-32 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
12.7 Debug exception

When a software debug event occurs and Monitor debug-mode is selected and enabled
then a Debug exception is taken. Prefetch Abort and Data Abort Vector catch debug
events are ignored though. Unlinked context ID breakpoint debug events are also
ignored if the processor is running in a privileged mode and Monitor debug-mode is
selected and enabled.

If the cause of the Debug exception is a watchpoint debug event, the processor performs
the following actions:

• The DSCR[5:2] method of entry bits are set to indicate that a watchpoint
occurred.

• The CP15 DFSR, FAR, and WFAR, are set as described in Effect of a debug event
on CP15 registers on page 12-31.

• The same sequence of actions as in a Data Abort exception is performed. This
includes setting the r14_abt, base register and destination registers to the same
values as if this was a Data Abort.

The Data Abort handler is responsible for checking the DFSR or DSCR[5:2] bit to
determine if the routine entry was caused by a debug exception or a Data Abort
exception. On entry:

1. It must first check for the presence of a monitor target.

2. If present, the handler must disable the active watchpoints. This is necessary to
prevent corruption of the DFSR because of an unexpected watchpoint debug
event while servicing a Data Abort exception.

3. If the cause is a Debug exception the Data Abort handler branches to the monitor
target.

Note
 • The FAR is set to an Unpredictable value

• The address of the instruction that caused the watchpoint debug event can
be found in the WFAR

• The address of the instruction to restart at plus 0x08 can be found in the
r14_abt register.

If the cause of the Debug exception is a breakpoint, software breakpoint or vector catch
debug event, the processor performs the following actions:

• the DSCR[5:2] method of entry bits are set appropriately
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-33
Unrestricted Access Non-Confidential

Debug
• the CP15 IFSR register is set as described in Effect of a debug event on CP15
registers on page 12-31

• the same sequence of actions as in a Prefetch Abort exception is performed.

The Prefetch Abort handler is responsible for checking the IFSR or DSCR[5:2] bits to
find out if the routine entry is caused by a Debug exception or a Prefetch Abort
exception. If the cause is a Debug exception it branches to the monitor target.

Note
 The address of the instruction causing the Software debug event plus 0x04 can be found
in the r14_abt register.

Table 12-17 shows the values in the link register after exceptions.

Table 12-17 Values in the link register after exceptions

Cause of the
fault

ARM Thumb Java Return address (RAa) meaning

Breakpoint RA+4 RA+4 RA+4 Breakpointed instruction address

Watchpoint RA+8 RA+8 RA+8 Address of the instruction where the execution resumes (a number of
instructions after the one that hit the watchpoint)

BKPT instruction RA+4 RA+4 RA+4 BKPT instruction address

Vector catch RA+4 RA+4 RA+4 Vector address

Prefetch Abort RA+4 RA+4 RA+4 Address of the instruction where the execution resumes

Data Abort RA+8 RA+8 RA+8 Address of the instruction where the execution resumes

a. Watchpoints can be imprecise. RA is not the address of the instruction immediately after the one that hit the watchpoint. The
processor might stop a number of instructions later. The address of the instruction that hit the watchpoint is in the CP15 WFAR.
12-34 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
12.8 Debug state

When the conditions in Behavior of the processor on debug events on page 12-30 are
met then the processor switches to debug state. While in debug state, the processor
behaves as follows:

• The DSCR[0] core halted bit is set.

• The DBGACK signal is asserted, see External signals on page 12-49.

• The DSCR[5:2] method of entry bits are set appropriately.

• The CP15 IFSR, DFSR, and FAR registers are set as described in Effect of a debug
event on CP15 registers on page 12-31. The WFAR is set to an Unpredictable
value.

• The processor is halted. The pipeline is flushed and no instructions are fetched.

• The processor does not change the execution mode. The CPSR is not altered.

• Interrupts and exceptions are treated as described in Interrupts on page 12-37 and
Exceptions on page 12-37.

• Software debug events are ignored.

• The external debug request signal is ignored.

• Debug state entry request commands are ignored.

• There is a mechanism, using the Debug Test Access Port, where the core is forced
to execute an ARM state instruction. This mechanism is enabled using DSCR[13]
execute ARM instruction enable bit.

• The core executes the instruction as if it is in ARM state, regardless of the actual
value of the T and J bits of the CPSR. If you do set both the J and T bits the
behavior is Unpredictable.

• In this state the core can execute any ARM state instruction, as if in a privileged
mode. For example, if the processor is in User mode then the MSR instruction
updates the PSRs and all the CP14 debug instructions can be executed. However,
the processor still accesses the register bank and memory as indicated by the
CPSR mode bits. For example, if the processor is in User mode then it sees the
User mode register bank, and accesses the memory without any privilege.

• The PC behaves as described in Behavior of the PC in debug state on page 12-36.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-35
Unrestricted Access Non-Confidential

Debug
• A DBGTAP debugger can force the processor out of debug state by issuing a
Restart instruction, see Table 13-1 on page 13-6. The Restart command clears the
DSCR[1] core restarted flag. When the processor has actually exited debug state,
the DSCR[1] core restarted bit is set and the DSCR[0] core halted bit and
DBGACK signal are cleared.

12.8.1 Behavior of the PC in debug state

In debug state:

• The PC is frozen on entry to debug state. That is, it does not increment on the
execution of ARM instructions. However, branches and instructions that modify
the PC directly do update it.

• If the PC is read after the processor has entered debug state, it returns a value as
described in Table 12-18 on page 12-37, depending on the previous state and the
type of debug event.

• If a sequence for writing a certain value to the PC is executed while in debug state,
and then the processor is forced to restart, execution starts at the address
corresponding to the written value. However, the CPSR must be set to the return
ARM, Thumb, or Jazelle state before the PC is written to, otherwise the processor
behavior is Unpredictable.

• If the processor is forced to restart without having performed a write to the PC,
the restart address is Unpredictable.

• If the PC or CPSR are written to while in debug state, subsequent reads to the PC
return an Unpredictable value.

• If a conditional branch is executed and it fails its condition code, an Unpredictable
value is written to the PC.

• If you switch the processor from ARM to Jazelle state while in debug state,
R5[9:0] is cleared. To avoid losing any processor state in this situation, save R5
before switching from ARM to Java and restore it afterwards.
12-36 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
Table 12-18 shows the read PC value after debug state entry for different debug events.

12.8.2 Interrupts

Interrupts are ignored regardless of the value of the I and F bits of the CPSR, although
these bits are not changed because of the debug state entry.

12.8.3 Exceptions

Exceptions are handled as follows while in debug state:

Reset This exception is taken as in a normal processor state, ARM, Thumb, or
Java. This means the processor leaves debug state as a result of the system
reset.

Prefetch Abort

This exception cannot occur because no instructions are prefetched while
in debug state.

Debug This exception cannot occur because software debug events are ignored
while in debug state.

Table 12-18 Read PC value after debug state entry

Debug event ARM Thumb Java Return address (RAa) meaning

Breakpoint RA+8 RA+4 RA Breakpointed instruction address

Watchpoint RA+8 RA+4 RA Address of the instruction where the execution resumes (several
instructions after the one that hit the watchpoint)

BKPT instruction RA+8 RA+4 RA BKPT instruction address

Vector catch RA+8 RA+4 RA Vector address

External debug
request signal
activation

RA+8 RA+4 RA Address of the instruction where the execution resumes

Debug state entry
request command

RA+8 RA+4 RA Address of the instruction where the execution resumes

a. This is the address of the instruction that the processor first executes on debug state exit. Watchpoints can be imprecise.
RA is not the address of the instruction immediately after the one that hit the watchpoint. The processor might stop a
number of instructions later. The address of the instruction that hit the watchpoint is in the CP15 WFAR.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-37
Unrestricted Access Non-Confidential

Debug
SWI

If this instruction is executed while in debug state, the behavior of the
ARM11 MPCore processor is Unpredictable.

Undefined instruction exceptions

If an Undefined instruction is executed while the processor is in Java and
debug state, the behavior of the ARM11 MPCore processor is
Unpredictable. If an Undefined instruction is executed while the
processor is in ARM debug state or Thumb debug state, the behavior of
the core is as follows:

• the PC, CPSR, and SPSR_und are set as for normal processor state
exception entry

• R14_und is set to an Unpredictable value

• the processor remains in debug state and does not fetch the
exception vector.

Data abort

When a Data Abort occurs in debug state, the behavior of the core is as
follows:

• The PC, CPSR, and SPSR_abt are set as for a normal processor
state exception entry.

• If the debugger has not written to the PC or the CPSR while in
debug state, R14_abt is set as described in the ARM Architecture
Reference Manual.

• If the debugger has written to the PC or the CPSR while in debug
state, R14_abt is set to an Unpredictable value.

• The processor remains in debug state and does not fetch the
exception vector.

• The DFSR, and FAR are set as for a normal processor state
exception entry. The WFAR is set to an Unpredictable value.

• The DSCR[6] sticky precise Data Abort bit, or the DSCR[7] sticky
imprecise Data Aborts bit are set.

• The DSCR[5:2] method of entry bits are set to b0110.

If it is an imprecise Data Abort and the debugger has not written to the
PC or CPSR, R14_abt is set as described in the Architecture Reference
Manual. Therefore the processor is in the same state as if the exception
was taken on the instruction that was cancelled by the debug state entry
sequence. This is necessary because it is not possible to guarantee that the
debugger reads the PC before an imprecise Data Abort exception is taken.
12-38 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
12.9 Debug communications channel

There are two ways that a DBGTAP debugger can send data to or receive data from the
core:

• The debug communications channel, when the core is not in debug state. It is
defined as the set of resources used for communicating between the DBGTAP
debugger and a piece of software running on the core.

• The mechanism for forcing the core to execute ARM instructions, when the core
is in debug state. For details see Executing instructions in debug state on
page 13-23.

At the core side, the debug communications channel resources are:

• CP14 Debug Transfer Register c5 (DTR). Data coming from a DBGTAP
debugger can be read by an MRC or STC instruction addressed to this register. The
core can write to this register any data intended for the DBGTAP debugger, using
an MCR or LDC instruction. Because the DTR comprises both a read (rDTR) and a
write portion (wDTR), a data item written by the core can be held in this register
at the same time as one written by the DBGTAP debugger.

• Some flags and control bits of CP14 Debug Status and Control Register c1
(DSCR):

— User mode access to comms channel disable, DSCR[12]. If this bit is set,
only privileged software is able to access the debug communications
channel. That is, access the DSCR and the DTR.

— wDTRfull flag, DSCR bit [29]. When clear, this flag indicates to the core
that the wDTR is ready to receive data. It is automatically cleared on reads
of the wDTR by the DBGTAP debugger, and is set on writes by the core to
the same register. If this bit is set and the core attempts to write to the
wDTR, the register contents are overwritten and the wDTRfull flag remains
set.

— rDTRfull flag, DSCR bit [30]. When set, this flag indicates to the core that
there is data available to read at the rDTR. It is automatically set on writes
to the rDTR by the DBGTAP debugger, and is cleared on reads by the core
of the same register.

The DBGTAP debugger side of the debug communications channel is described in
Monitor debug-mode debugging on page 13-49.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-39
Unrestricted Access Non-Confidential

Debug
12.10 Debugging in a system with TLBs

Debugging in a system with TLBs must be as non-intrusive as possible. In MP11 CPUs
there is a way to put the main TLB in a state where its contents are not affected by the
debugging process. This facility must be accessible from both the core and the
DBGTAP debugger side. The ARM11 MPCore processor enables you to put the main
TLB in this mode using CP15 c15. See TLB Debug Control Register on page 3-71.
12-40 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
12.11 Monitor debug-mode debugging

Monitor debug-mode debugging is essential in real-time systems when the integer unit
cannot be halted to collect information. Engine controllers and servo mechanisms in
hard drive controllers are examples of systems that might not be able to stop the code
without physically damaging components. These are typical systems that can be
debugged using Monitor debug-mode.

For situations that can only tolerate a small intrusion into the instruction stream,
Monitor debug-mode is ideal. Using this technique, code can be suspended with an
exception long enough to save off state information and important variables. The code
continues when the exception handler is finished. The method of entry bits in the DSCR
can be read to determine what caused the exception.

When in Monitor debug-mode, all breakpoint and watchpoint registers can be read and
written with MRC and MCR instructions from a privileged processing mode.

12.11.1 Entering the monitor target

Monitor debug-mode is the default mode on power-on reset. Only a DBGTAP debugger
can change the mode bit in the DSCR. When a software debug event occurs (as
described in Software debug event on page 12-29) and Monitor debug-mode is selected
and enabled, then a Debug exception is taken, although Prefetch Abort and Data Abort
vector catch debug events are ignored. Debug exception entry is described in Debug
exception on page 12-33. The Prefetch Abort handler can check the IFSR or the
DSCR[5:2] bits, and the Data Abort handler can check the DFSR or the DSCR[5:2] bits,
to find out the cause of the exception. If the cause was a Debug exception, the handler
branches to the monitor target.

When the monitor target is running, it can determine and modify the processor state and
new software debug events can be programmed.

12.11.2 Setting breakpoints, watchpoints, and vector catch debug events

When the monitor target is running, breakpoints, watchpoints, and vector catch debug
events can be set. This can be done by executing MCR instructions to program the
appropriate CP14 debug registers. The monitor target can only program these registers
if the processor is in a privileged mode and Monitor debug-mode is selected and
enabled, see Debug Status and Control Register bit functions on page 12-10.

You can program a vector catch debug event using CP14 Debug Vector Catch Register.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-41
Unrestricted Access Non-Confidential

Debug
You can program a breakpoint debug event using CP14 Breakpoint Value Registers and
CP14 Breakpoint Control Registers, see CP14 c64-c69, Breakpoint Value Registers
(BVR) on page 12-15 and CP14 c80-c85, Breakpoint Control Registers (BCR) on
page 12-17.

You can program a watchpoint debug event using CP14 Watchpoint Value Registers and
CP14 Watchpoint Control Registers, see CP14 c96-c97, Watchpoint Value Registers
(WVR) on page 12-20, and CP14 c112-c113, Watchpoint Control Registers (WCR) on
page 12-21.

Setting a simple breakpoint on an IVA

You can set a simple breakpoint on an IVA as follows:

1. Read the BCR.

2. Clear the BCR[0] enable breakpoint bit in the read word and write it back to the
BCR. Now the breakpoint is disabled.

3. Write the IVA to the BVR register.

4. Write to the BCR with its fields set as follows:

• BCR[21] meaning of BVR bit cleared, to indicate that the value loaded into
BVR is to be compared against the IVA bus.

• BCR[20] enable linking bit cleared, to indicate that this breakpoint is not to
be linked.

• BCR[8:5] byte address select BCR field as required.

• BCR[2:1] supervisor access BCR field as required.

• BCR[0] enable breakpoint bit set.

Note
 Any BVR can be compared against the IVA bus.

Setting a simple breakpoint on a context ID value

A simple breakpoint on a context ID value can be set, using one of the context ID
capable BRPs, as follows:

1. Read the BCR.

2. Clear the BCR[0] enable breakpoint bit in the read word and write it back to the
BCR. The breakpoint is now disabled.
12-42 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
3. Write the context ID value to the BVR register.

4. Write to the BCR with its fields set as follows:

• BCR[21] meaning of BVR bit set, to indicate that the value loaded into
BVR is to be compared against the CP15 Context ID Register c13

• BCR[20] enable linking bit cleared, to indicate that this breakpoint is not to
be linked

• BCR[8:5] byte address select BCR field set to b1111

• BCR[2:1] supervisor access BCR field as required

• BCR[0] enable breakpoint bit set.

Note
 Any BVR can be compared against the IVA bus.

Setting a linked breakpoint

In the following sequence b is any of the breakpoint registers pairs with context ID
comparison capability, and a is any of the implemented breakpoints different from b.

You can link IVA holding and contextID-holding breakpoints register pairs as follows:

1. Read the BCRa and BCRb.

2. Clear the BCRa[0] and BCRb[0] enable breakpoint bits in the read words and
write them back to the BCRs. The breakpoints are now disabled.

3. Write the IVA to the BVRa register.

4. Write the context ID to the BVRb register.

5. Write to the BCRb with its fields set as follows:

• BCRb[21] meaning of BVR bit set, to indicate that the value loaded into
BVRb is to be compared against the CP15 context ID register 13

• BCRb[20] enable linking bit, set

• BCRb[8:5] byte address select set to b1111

• BCRb[2:1] supervisor access set to b11

• BCRb[0] enable breakpoint bit set.

6. Write to the BCRa with its fields set as follows:

• BCRa[21] meaning of BVR bit cleared, to indicate that the value loaded
into BVRa is to be compared against the IVA bus
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-43
Unrestricted Access Non-Confidential

Debug
• BCRa[20] enable linking bit set, to link this BRP with the one indicated by
BCRa[19:16] (BRPb in this example)

• binary representation of b into BCR[19:6] linked BRP field

• BCRa[8:5] byte address select field as required

• BCRa[2:1] supervisor access field as required

• BCRa[0] enable breakpoint set.

Setting a simple watchpoint

You can set a simple watchpoint as follows:

1. Read the WCR.

2. Clear the WCR[0] enable watchpoint bit in the read word and write it back to the
WCR. The watchpoint is now disabled.

3. Write the DVA to the WVR register.

4. Write to the WCR with its fields set as follows:

• WCR[20] enable linking bit cleared, to indicate that this watchpoint is not
to be linked

• WCR byte address select, load/store access, and supervisor access fields as
required

• WCR[0] enable watchpoint bit set.

Note
 Any WVR can be compared against the DVA bus.

Setting a linked watchpoint

In the following sequence b is any of the BRPs with context ID comparison capability.
You can use any of the WRPs.

You can link WRPs and contextID-holding BRPs as follows:

1. Read the WCR and BCRb.

2. Clear the WCR[0] Enable watchpoint and the BCRb[0] Enable breakpoint bits in
the read words and write them back to the WCR and BCRb. The watchpoint and
the breakpoint are now disabled.

3. Write the DVA to the WVR register.
12-44 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
4. Write the context ID to the BVRb register.

5. Write to the WCR with its fields set as follows:

• WCR[20] enable linking bit set, to link this WRP with the BRP indicated
by WCR[19:16] (BRPb in this example)

• binary representation of b into WCR[19:6] linked BRP field

• WCR byte address select, load/store access, and supervisor access fields as
required

• WCR[0] enable watchpoint bit set.

6. Write to the BCRb with its fields set as follows:

• BCRb[21] meaning of BVR bit set, to indicate that the value loaded into
BVRb is to be compared against the CP15 Context ID Register.

• BCRb[20] enable linking bit, set

• BCRb[8:5] byte address select set to b1111

• BCRb[2:1] supervisor access set to b11

• BCRb[0] enable breakpoint bit set.

12.11.3 Setting software breakpoint debug events (BKPT)

To set a software breakpoint on a particular Virtual Address, the monitor target must
perform the following steps:

1. Read memory location and save actual instruction.

2. Write BKPT instruction to the memory location.

3. Read memory location again to check that the BKPT instruction has been written.

4. If it has not been written, determine the reason.

Note
 Cache coherency issues might arise when writing a BKPT instruction.

12.11.4 Using the debug communications channel

To read a word sent by a DBGTAP debugger:

1. Read the DSCR register.

2. If DSCR[30] rDTRfull flag is clear, then go to 1.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-45
Unrestricted Access Non-Confidential

Debug
3. Read the word from the rDTR, CP14 Data Transfer Register c5.

To write a word for a DBGTAP debugger:

1. Read the DSCR register.

2. If DSCR[29] wDTRfull flag is set, then go to 1.

3. Write the word to the wDTR, CP14 Data Transfer Register c5.
12-46 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
12.12 Halting debug-mode debugging

Halting debug-mode is used to debug the ARM11 MPCore processor using external
hardware connected to the DBGTAP. The external hardware provides an interface to a
DBGTAP debugger application. You can only select Halting debug-mode by setting the
halt bit, bit [14], of the DSCR, which is only writable through the Debug Test Access
Port. See Chapter 13 Debug Test Access Port.

In Halting debug-mode the processor stops executing instructions if one of the
following events occurs:

• a breakpoint hits

• a watchpoint hits

• a BKPT instruction is executed

• the EDBGRQ signal is asserted

• a Halt instruction has been scanned into the DBGTAP Instruction Register

• a vector catch occurs.

When the processor is halted, it is controlled by sending instructions to the integer unit
through the DBGTAP. Any valid instruction can be scanned into the processor, and the
effect of the instruction on the integer unit is as if it was executed under normal
operation. Also accessible through the DBGTAP is a register to transfer data between
CP14 and the DBGTAP debugger.

The integer unit is restarted by executing a DBGTAP Restart instruction.

12.12.1 Entering debug state

When a debug event occurs and Halting debug-mode is selected and enabled and the
core is in a state when debug is permitted, then the processor enters debug state as
defined in Debug state on page 12-35.

When the core is in debug state, the DBGTAP debugger can determine and modify the
processor state and new debug events can be programmed.

12.12.2 Exiting debug state

You can force the processor out of debug state using the DBGTAP Restart instruction.
See Exiting debug state on page 13-5. The DSCR[1] core restarted bit indicates if the
core has already returned to normal operation.

12.12.3 Programming debug events

In Halting debug-mode debugging you can program the following debug events:

• Setting breakpoints, watchpoints, and vector catch debug events on page 12-48
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-47
Unrestricted Access Non-Confidential

Debug
• Setting software breakpoints (BKPT)

• Reading and writing to memory.

Setting breakpoints, watchpoints, and vector catch debug events

For setting breakpoints, watchpoints, and vector catch debug events when in Halting
debug-mode, the debug host has to use the same CP14 debug registers and the same
sequence of operations as in Monitor debug-mode debugging (see Setting breakpoints,
watchpoints, and vector catch debug events on page 12-41). The only difference is that
the CP14 debug registers are accessed using the DBGTAP scan chains, see DBGTAP
controller overview on page 13-6.

Note
 A DBGTAP debugger can access the CP14 debug registers whether the processor is in
debug state or not, so these debug events can be programmed while the processor is in
ARM, Thumb, or Jazelle state.

Setting software breakpoints (BKPT)

To set a software breakpoint, the DBGTAP debugger must perform the same steps as
the monitor target (described in Setting breakpoints, watchpoints, and vector catch
debug events on page 12-41). The difference is that CP14 debug registers are accessed
using the DBGTAP scan chains, see Chapter 13 Debug Test Access Port.

Reading and writing to memory

See Debug sequences on page 13-33 for memory access sequences using the MPCore
Debug Test Access Port.
12-48 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug
12.13 External signals

The following external signals are used by debug:

DBGACK Debug acknowledge signal. The processor asserts this output
signal to indicate the system has entered Debug state. See Debug
state on page 12-35 for a definition of the Debug state.

DBGEN Debug enable signal. When this signal is LOW, DSCR[15:14] is
read as 0 and the processor behaves as if in debug disabled mode.

EDBGRQ External debug request signal. As described in External debug
request signal on page 12-30, this input signal forces the core into
Debug state if the debug logic is in Halting debug-mode.

DBGNOPWRDWN

Powerdown disable signal generated from DSCR[9]. When this
signal is HIGH, the system power controller is forced into emulate
mode. This is to avoid losing CP14 debug state that can only be
written through the DBGTAP. Therefore, DSCR[9] must only be
set if Halting debug-mode debugging is necessary.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 12-49
Unrestricted Access Non-Confidential

Debug
12-50 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 13
Debug Test Access Port

This chapter introduces the Debug Test Access Port built into the MP11 CPUs within
the ARM11 MPCore processor. It contains the following sections:

• Debug Test Access Port and Halting debug-mode on page 13-2

• Synchronizing RealView ICE on page 13-3

• Entering debug state on page 13-4

• Exiting debug state on page 13-5

• DBGTAP controller overview on page 13-6

• Debug registers on page 13-8

• Using the Debug Test Access Port on page 13-23

• Debug sequences on page 13-33

• Programming debug events on page 13-47

• Monitor debug-mode debugging on page 13-49.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-1
Unrestricted Access Non-Confidential

Debug Test Access Port
13.1 Debug Test Access Port and Halting debug-mode

JTAG-based hardware debug using Halting debug-mode provides access to the ARM11
MPCore processor CPUs and their debug units. Access is through scan chains and the
Debug Test Access Port (DBGTAP). Figure 13-1 shows the DBGTAP State Machine
(DBGTAPSM).

Figure 13-1 JTAG DBGTAP state machine diagram

From IEEE Std 1149.1-1990. Copyright 2002, 2003 IEEE. All rights reserved.

tms=1

tms=0

tms=1
tms=1

tms=1 tms=0 tms=1 tms=0

tms=1

tms=1

tms=0

Run-Test/Idle

Test-Logic-

Reset

Select-DR-Scan Select-IR-Scantms=1

Capture-DR

tms=0

tms=0

tms=0

Capture-IR

tms=0

Shift-IR

Exit1-IR

tms=1

Pause-IR

tms=0

Exit2-IR

tms=1

Update-IR

tms=1

tms=0

Shift-DR

Exit1-DR

tms=1

Pause-DR

tms=0

Exit2-DR

tms=1

Update-DR

tms=1

tms=0tms=0

tms=1

tms=0 tms=0

tms=1

tms=0
13-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
13.2 Synchronizing RealView ICE

The system and test clocks are synchronized within the ARM11 MPCore processor and
so no additional logic is required to synchronize off-chip debug clocking.

The interface to RealView ICE consists of the following signals:

• TDO
• TCK
• nTRST
• TDI
• TMS
• RTCK.

Note
 Each MP11 CPU exports a full JTAG interface to RealView ICE.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-3
Unrestricted Access Non-Confidential

Debug Test Access Port
13.3 Entering debug state

Halting debug-mode is enabled by writing a 1 to bit [14] of the DSCR, see CP14 c1,
Debug Status and Control Register (DSCR) on page 12-9. This can be done by a
DBGTAP debugger hardware such as RealView ICE or by using a CP14 instruction.
When this mode is enabled and the core is in a state where debug is permitted, the
processor halts instead of taking an exception in software, if one of the following events
occurs:

• A Halt instruction is scanned in through the DBGTAP. The DBGTAP controller
must pass through Run-Test/Idle to issue the Halt command to the ARM.

• A vector catch occurs.

• A breakpoint hits.

• A watchpoint hits.

• A BKPT instruction is executed.

• EDBGRQ is asserted.

The core halted bit in the DSCR is set when debug state is entered. At this point, the
debugger determines why the integer unit was halted and preserves the processor state.
The MSR instruction can be used to change modes and gain access to all banked registers
in the machine. While in debug state:

• the PC is not incremented

• interrupts are ignored

• all instructions are read from the instruction transfer register (scan chain 4).

For more information on debug state, see Debug state on page 12-35.
13-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
13.4 Exiting debug state

To exit from debug state, scan in the Restart instruction through the MPCore DBGTAP.
You might want to adjust the PC before restarting, depending on the way the integer unit
entered debug state. When the state machine enters the Run-Test/Idle state, normal
operations resume. The delay, waiting until the state machine is in Run-Test/Idle,
enables conditions to be set up in other devices in a multiprocessor system without
taking immediate effect. When Run-Test/Idle state is entered, all the processors resume
operation simultaneously. The core restarted bit is set when the Restart sequence is
complete.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-5
Unrestricted Access Non-Confidential

Debug Test Access Port
13.5 DBGTAP controller overview

The MP11 CPU DBGTAP controller is the part of the debug unit that enables access
through the DBGTAP to the on-chip debug resources, such as breakpoint and
watchpoint registers. The DBGTAP controller is based on the IEEE 1149.1 standard and
supports:

• a device ID register

• a Bypass Register

• a 5-bit Instruction Register

• a 5-bit Scan Chain Select Register.

In addition, the public instructions listed in Table 13-1 are supported.

Table 13-1 Supported public instructions

Binary code Instruction Description

b00000 EXTEST This instruction connects the selected scan chain between CPUTDI and TDO. When
the Instruction Register is loaded with the EXTEST instruction, the debug scan chains
can be written. See Scan chains on page 13-11.

b00001 - Reserved.

b00010 Scan_N Selects the Scan Chain Select Register (SCREG). This instruction connects SCREG
between CPUTDI and TDO. See Scan chain select register (SCREG) on page 13-10.

b00011 - Reserved.

b00100 Restart Forces the processor to leave debug state. This instruction is used to exit from debug
state. The processor restarts when the Run-Test/Idle state is entered.

b00101 - Reserved.

b00110 - Reserved.

b00111 - Reserved.

b01000 Halt Forces the processor to enter debug state. This instruction stops the processor and puts
it into debug state.

b01001 - Reserved.

b01010-b01011 - Reserved.

b01100 INTEST This instruction connects the selected scan chain between CPUTDI and TDO. When
the instruction register is loaded with the INTEST instruction, the debug scan chains can
be read. See Scan chains on page 13-11.

b01101-b11100 - Reserved.
13-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
Note
 Sample/Preload, Clamp, HighZ, and ClampZ instructions are not implemented because the
MPCore DBGTAP controller does not support the attachment of external boundary scan
chains.

All unused DBGTAP controller instructions default to the Bypass instruction.

b11101 ITRsel When this instruction is loaded into the IR (Update-DR state), the DBGTAP controller
behaves as if IR=EXTEST and SCREG=4. The ITRsel instruction makes the
DBGTAP controller behave as if EXTEST and scan chain 4 are selected. It can be used
to speed up certain debug sequences. See Using the ITRsel IR instruction on
page 13-24 for the effects of using this instruction.

b11110 IDcode See IEEE 1149.1. Selects the DBGTAP controller Device ID Code Register.

The IDcode instruction connects the Device ID Code Register (or ID register) between
CPUTDI and TDO. The ID register is a 32-bit register that enables you to determine
the manufacturer, part number, and version of a component using the DBGTAP.

See Device ID code register on page 13-8 for details of selecting and interpreting the
ID register value.

b11111 Bypass See IEEE 1149.1. Selects the DBGTAP controller Bypass Register. The Bypass
instruction connects a 1-bit shift register (the Bypass Register) between CPUTDI and
TDO. The first bit shifted out is a 0. All unused DBGTAP controller instruction codes
default to the Bypass instruction. See Bypass register on page 13-8.

Table 13-1 Supported public instructions (continued)

Binary code Instruction Description
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-7
Unrestricted Access Non-Confidential

Debug Test Access Port
13.6 Debug registers

You can connect the following debug registers or scan chains between CPUTDI and
TDO:

• Bypass register

• Device ID code register

• Instruction Register on page 13-9

• Scan chain select register (SCREG) on page 13-10

• Scan chain 0, Debug ID Register (DIDR) on page 13-11

• Scan chain 1, Debug Status and Control Register (DSCR) on page 13-12

• Scan chain 4, Instruction Transfer Register (ITR) on page 13-13

• Scan chain 5 on page 13-15

• Scan chain 7 on page 13-18.

13.6.1 Bypass register

Purpose Bypasses the device by providing a path between CPUTDI and
TDO.

Length 1 bit.

Operating mode When the bypass instruction is the current instruction in the
Instruction Register, serial data is transferred from CPUTDI to
TDO in the Shift-DR state with a delay of one TCK cycle. There
is no parallel output from the Bypass Register. A logic 0 is loaded
from the parallel input of the Bypass Register in the Capture-DR
state. Nothing happens at the Update-DR state.

Order Figure 13-2 shows the order of bits in the Bypass Register.

Figure 13-2 Bypass register bit order

13.6.2 Device ID code register

Purpose Device identification. To distinguish the MP11 CPUs from other
ARM processors, the DBGTAP controller ID is unique for each.
This means that a DBGTAP debugger such as RealView ICE can
easily see which processor it is connected to.

0b0

CPUTDI TDOBypass
13-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
The default manufacturer ID for the MP11 CPUs is 0x23B.

The part number field is hard-wired inside the MP11 CPUs to
0x7B37. See c0, Main ID Register on page 3-11 for information on
how ARM semiconductor partner-specific are identified.

Length 32 bits.

Operating mode When the ID code instruction is current, the shift section of the
Device ID Code Register is selected as the serial path between
CPUTDI and TDO. There is no parallel output from the ID
register. The 32-bit device ID code is loaded into this shift section
during the Capture-DR state. This is shifted out during Shift-DR
(least significant bit first) while a don’t care value is shifted in.
The shifted-in data is ignored in the Update-DR state.

Order Figure 13-3 shows the bit order in the ID code register.

Figure 13-3 Device ID code register bit order

13.6.3 Instruction Register

Purpose Holds the current DBGTAP controller instruction.

Length 5 bits.

Operating mode When in Shift-IR state, the shift section of the Instruction Register
is selected as the serial path between CPUTDI and TDO. At the
Capture-IR state, the binary value b00001 is loaded into this shift
section. This is shifted out during Shift-IR (least significant bit
first), while a new instruction is shifted in (least significant bit
first). At the Update-IR state, the value in the shift section is
loaded into the Instruction Register so it becomes the current
instruction. On DBGTAP reset, the IDcode becomes the current
instruction.

Order Figure 13-4 on page 13-10 shows the bit order in the Instruction
Register.

Version

31 28 27 12 11 1 0

Part number Manufacturer ID 1

CPUTDI TDOData[31:0]

31 0
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-9
Unrestricted Access Non-Confidential

Debug Test Access Port
Figure 13-4 Instruction Register bit order

13.6.4 Scan chain select register (SCREG)

Purpose Holds the currently active scan chain number.

Length 5 bits.

Operating mode After Scan_N has been selected as the current instruction, when in
Shift-DR state, the shift section of the Scan Chain Select Register
is selected as the serial path between CPUTDI and TDO. At the
Capture-DR state, the binary value b10000 is loaded into this shift
section. This is shifted out during Shift-DR (least significant bit
first), while a new value is shifted in (least significant bit first). At
the Update-DR state, the value in the shift section is loaded into
the Scan Chain Select Register to become the current active scan
chain. All other instructions such as INTEST then apply to that scan
chain. The currently selected scan chain only changes when a
Scan_N or ITRsel instruction is executed, or a DBGTAP reset
occurs. On DBGTAP reset, scan chain 3 is selected as the active
scan chain.

Order Figure 13-5 on page 13-11 shows the bit order in the Scan Chain
Select Register.

0b00001

CPUTDI TDOData[4:0]

IR[4:0]
13-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
Figure 13-5 Scan Chain Select Register bit order

13.6.5 Scan chains

To access the debug scan chains you must:

1. Load the Scan_N instruction into the IR. Now SCREG is selected between
CPUTDI and TDO.

2. Load the number of the required scan chain. For example, load b00101 to access
scan chain 5.

3. Load either INTEST or EXTEST into the IR.

4. Go through the DR leg of the DBGTAPSM to access the scan chain.

You must use INTEST and EXTEST as follows:

INTEST Use INTEST for reading the active scan chain. Data is captured into the
shift register at the Capture-DR state. The previous value of the scan
chain is shifted out during the Shift-DR state, while a new value is shifted
in. The scan chain is not updated during Update-DR. Those bits or fields
that are defined as cleared on read are only cleared if INTEST is selected,
even when EXTEST also captures their values.

EXTEST Use EXTEST for writing the active scan chain. Data is captured into the
shift register at the Capture-DR state. The previous value of the scan
chain is shifted out during the Shift-DR state, while a new value is shifted
in. The scan chain is updated with the new value during Update-DR.

Scan chain 0, Debug ID Register (DIDR)

Purpose Debug.

Length 8 + 32 = 40 bits.

0b10000

CPUTDI TDOData[4:0]

4 0

SCREG[4:0]
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-11
Unrestricted Access Non-Confidential

Debug Test Access Port
Description Debug identification. This scan chain accesses CP14 debug register 0, the
Debug ID Register. Additionally, the eight most significant bits of this
scan chain contain an implementor code. This field is hardwired to 0x41,
the implementor code for ARM Limited, as specified in the ARM
Architecture Reference Manual. This register is read-only. Therefore,
EXTEST has the same effect as INTEST.

Order Figure 13-6 shows the bit order in scan chain 0.

Figure 13-6 Scan chain 0 bit order

Scan chain 1, Debug Status and Control Register (DSCR)

Purpose Debug.

Length 32 bits.

Description This scan chain accesses CP14 register 1, the DSCR. This is mostly a
read/write register, although certain bits are read-only for the Debug Test
Access Port. See CP14 c1, Debug Status and Control Register (DSCR) on
page 12-9 for details of DSCR bit definitions, and for read/write
attributes for each bit. Those bits defined as cleared on read are only
cleared if INTEST is selected.

Order Figure 13-7 on page 13-13 shows the bit order in scan chain 1.

Implementor

CPUTDI TDOData[39:0]

31 0

DIDR[31:0]

39 32

039
13-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
Figure 13-7 Scan chain 1 bit order

The following DSCR bits affect the operation of other scan chains:

DSCR[30:29] rDTRfull and wDTRfull flags. These indicate the status of the
rDTR and wDTR registers. They are copies of the rDTRempty
(NOT rDTRfull) and wDTRfull bits that the DBGTAP debugger
sees in scan chain 5.

DSCR[13] Execute ARM instruction enable bit. This bit enables the
mechanism used for executing instructions in debug state. It
changes the behavior of the rDTR and wDTR registers, the sticky
precise Data Abort bit, rDTRempty, wDTRfull, and InstCompl
flags. See Scan chain 5 on page 13-15.

DSCR[6] Sticky precise Data Abort flag. If the core is in debug state and the
DSCR[13] execute ARM instruction enable bit is HIGH, then this
flag is set on precise Data Aborts. See CP14 c1, Debug Status and
Control Register (DSCR) on page 12-9.

Note
 Unlike DSCR[6], DSCR [7] sticky imprecise Data Aborts flag

does not affect the operation of the other scan chains.

Scan chain 4, Instruction Transfer Register (ITR)

Purpose Debug.

Length 1 + 32 = 33 bits.

CPUTDI TDO

DSCR[31:0]

31 0

Data[31:0]

31 0

DSCR[31:0]

31 0
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-13
Unrestricted Access Non-Confidential

Debug Test Access Port
Description This scan chain accesses the Instruction Transfer Register (ITR), used to
send instructions to the core through the Prefetch Unit (PU). It consists
of 32 bits of information, plus an additional bit to indicate the completion
of the instruction sent to the core (InstCompl). The InstCompl bit is
read-only.

While in debug state, an instruction loaded into the ITR can be issued to
the core by making the DBGTAPSM go through the Run-Test/Idle state.
The InstCompl flag is cleared when the instruction is issued to the core
and set when the instruction completes.

For an instruction to be issued when going through Run-Test/Idle state,
you must ensure the following conditions are met:

• The processor must be in debug state.

• The DSCR[13] execute ARM instruction enable bit must be set.
For details of the DSCR see CP14 c1, Debug Status and Control
Register (DSCR) on page 12-9.

• Scan chain 4 or 5 must be selected.

• INTEST or EXTEST must be selected.

• Ready flag must be captured set. That is, the last time the
DBGTAPSM went through Capture-DR the InstCompl flag must
have been set.

• The DSCR[6] sticky precise Data Abort flag must be clear. This
flag is set on precise Data Aborts.

For an instruction to be loaded into the ITR when going through
Update-DR, you must ensure the following conditions are met:

• The processor can be in any state.

• The value of DSCR[13] execute ARM instruction enable bit does
not matter.

• Scan chain 4 must be selected.

• EXTEST must be selected.

• Ready flag must be captured set. That is, the last time the
DBGTAPSM went through Capture-DR the InstCompl flag must
have been set.

• The value of DSCR[6] sticky precise Data Abort flag does not
matter.

Order Figure 13-8 on page 13-15 shows the bit order in scan chain 4.
13-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
Figure 13-8 Scan chain 4 bit order

It is important to distinguish between the InstCompl flag and the Ready flag:

• The InstCompl flag signals the completion of an instruction.

• The Ready flag is the captured version of the InstCompl flag, captured at the
Capture-DR state. The Ready flag conditions the execution of instructions and the
update of the ITR.

The following points apply to the use of scan chain 4:

• When an instruction is issued to the core in debug state, the PC is not incremented.
It is only changed if the instruction being executed explicitly writes to the PC. For
example, branch instructions and move to PC instructions.

• If CP14 debug register c5 is a source register for the instruction to be executed,
the DBGTAP debugger must set up the data in the rDTR before issuing the
coprocessor instruction to the core. See Scan chain 5.

• Setting DSCR[13] the execute ARM instruction enable bit when the core is not in
debug state leads to Unpredictable behavior.

• The ITR is write-only. When going through the Capture-DR state, an
Unpredictable value is loaded into the shift register.

Scan chain 5

Purpose Debug.

Length 1 + 1 + 32 = 34 bits.

Description This scan chain accesses CP14 register c5, the data transfer registers,
rDTR and wDTR. The rDTR is used to transfer words from the DBGTAP
debugger to the core, and is read-only to the core and write-only to the

CPUTDI TDO

InstCompl

Ready

31 0

Data[31:0]

32

ITR[31:0]
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-15
Unrestricted Access Non-Confidential

Debug Test Access Port
DBGTAP debugger. The wDTR is used to transfer words from the core
to the DBGTAP debugger, and is read-only to the DBGTAP debugger and
write-only to the core.

The DBGTAP controller only sees one (read/write) register through scan
chain 5, and the appropriate register is chosen depending on the
instruction used. INTEST selects the wDTR, and EXTEST selects the rDTR.

Additionally, scan chain 5 contains some status flags. These are nRetry,
Valid, and Ready, which are the captured versions of the rDTRempty,
wDTRfull, and InstCompl flags respectively. All are captured at the
Capture-DR state.

Order Figure 13-9 shows the bit order in scan chain 5 with EXTEST selected
Figure 13-10 shows the bit order in scan chain 5 with INTEST selected.

Figure 13-9 Scan chain 5 bit order, EXTEST selected

Figure 13-10 Scan chain 5 bit order, INTEST selected

CPUTDI TDO

InstCompl

ReadynRetry

rDTRempty

EXTEST selected

31 0

wDTR[31:0]

3233

rDTR[31:0]

Data[31:0]

CPUTDI TDO

Ready

INTEST selected

31 0

wDTR[31:0]

3233

Data[31:0]

InstComplwDTRfull

Valid
13-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
You can use scan chain 5 for two purposes:

• As part of the Debug Communications Channel (DCC). The DBGTAP debugger
uses scan chain 5 to exchange data with software running on the core. The
software accesses the rDTR and wDTR using coprocessor instructions.

• For examining and modifying the processor state while the core is halted. For
example, to read the value of an ARM register:

1. Issue an MCR cp14, 0, Rd, c0, c5, 0 instruction to the core to transfer the
register contents to the CP14 debug c5 register.

2. Scan out the wDTR.

The DBGTAP debugger can use the DSCR[13] execute ARM instruction enable bit to
indicate to the core that it is going to use scan chain 5 as part of the DCC or for
examining and modifying the processor state. DSCR[13] = 0 indicates DCC use. The
behavior of the rDTR and wDTR registers, the sticky precise Data Abort, rDTRempty,
wDTRfull, and InstCompl flags changes accordingly:

• DSCR[13] = 0:

— The wDTRfull flag is set when the core writes a word of data to the DTR
and cleared when the DBGTAP debugger goes through the Capture-DR
state with INTEST selected. Valid indicates the state of the wDTR register,
and is the captured version of wDTRfull. Although the value of wDTR is
captured into the shift register, regardless of INTEST or EXTEST, wDTRfull is
only cleared if INTEST is selected.

— The rDTR empty flag is cleared when the DBGTAP debugger writes a word
of data to the rDTR, and set when the core reads it. nRetry is the captured
version of rDTRempty.

— rDTR overwrite protection is controlled by the nRetry flag. If the nRetry
flag is sampled clear, meaning that the rDTR is full, when going through
the Capture-DR state, then the rDTR is not updated at the Update-DR state.

— The InstCompl flag is always set.

— The sticky precise Data Abort flag is Unpredictable. See CP14 c1, Debug
Status and Control Register (DSCR) on page 12-9.

• DSCR[13] = 1:

— The wDTRfull flag behaves as if DSCR[13] is clear. However, the Ready
flag can be used for handshaking in this mode.

— The rDTR empty flag status behaves as if DSCR[13] is clear. However, the
Ready flag can be used for handshaking in this mode.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-17
Unrestricted Access Non-Confidential

Debug Test Access Port
— rDTR overwrite protection is controlled by the Ready flag. If the InstCompl
flag is sampled clear when going through Capture-DR, then the rDTR is not
updated at the Update-DR state. This prevents an instruction that uses the
rDTR as a source operand from having it modified before it has time to
complete.

— The InstCompl flag changes from 1 to 0 when an instruction is issued to the
core, and from 0 to 1 when the instruction completes execution.

— The sticky precise Data Abort flag is set on precise Data Aborts.

The behavior of the rDTR and wDTR registers, the sticky precise Data Abort,
rDTRempty, wDTRfull, and InstCompl flags when the core changes state is as follows:

• The DSCR[13] execute ARM instruction enable bit must be clear when the core
is not in debug state. Otherwise, the behavior of the rDTR and wDTR registers,
and the flags, is Unpredictable.

• When the core enters debug state, none of the registers and flags are altered.

• When the DSCR[13] execute ARM instruction enable bit is changed from 0 to 1:

1. None of the registers and flags are altered.

2. Ready flag can be used for handshaking.

• The InstCompl flag must be set when the DSCR[13] execute ARM instruction
enable bit is changed from 1 to 0. Otherwise, the behavior of the core is
Unpredictable. If the DSCR[13] flag is cleared correctly, none of the registers and
flags are altered.

• When the core leaves debug state, none of the registers and flags are altered.

Scan chain 7

Purpose Debug.

Length 7 + 32 + 1 = 40 bits.

Description Scan chain 7 accesses the VCR, PC, BRPs, and WRPs. The accesses are
performed with the help of read or write request commands. A read
request copies the data held by the addressed register into scan chain 7.
A write request copies the data held by the scan chain into the addressed
register. When a request is finished the ReqCompl flag is set. The
DBGTAP debugger must poll it and check it is set before another request
can be issued.
13-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
The exact behavior of the scan chain is as follows:

• Either EXTEST or INTEST have to be selected. They have the same
meaning in this scan chain.

• If the value captured by the Ready/nRW bit at the Capture-DR state
is 1, the data that is being shifted in generates a request at the
Update-DR state. The Address field indicates the register being
accessed (see Table 13-2 on page 13-21), the Data field contains
the data to be written and the Ready/nRW bit holds the read/write
information (0=read and 1=write). If the request is a read, the Data
field is ignored.

• When a request is placed, the Address and Data sections of the scan
chain are frozen. That is, their contents are not shifted until the
request is completed. This means that, if the value captured in the
Ready/nRW field at the Capture-DR state is 0, the shifted-in data is
ignored and the shifted-out value is all 0s.

• After a read request has been placed, if the DBGTAPSM goes
through the Capture-DR state and a logic 1 is captured in the
Ready/nRW field, this means that the shift register has also
captured the requested register contents. Therefore, they are shifted
out at the same time as the Ready/nRW bit. The Data field is
corrupted as new data is shifted in.

• After a write request has been placed, if the DBGTAPSM goes
through the Capture-DR state and a logic 1 is captured in the
Ready/nRW field, this means that the requested write has
completed successfully.

• If the Address field is all 0s (address of the NULL register) at the
Update-DR state, then no request is generated.

• A request to a reserved register generates Unpredictable behavior.

Order Figure 13-11 on page 13-20 shows the bit order in scan chain 7.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-19
Unrestricted Access Non-Confidential

Debug Test Access Port
Figure 13-11 Scan chain 7 bit order

A typical sequence for writing registers is as follows:

1. Scan in the address of a first register, the data to write, and a 1 to indicate that this
is a write request.

2. Scan in the address of a second register, the data to write, and a 1 to indicate that
this is a write request.

Scan out 40 bits. If Ready/nRW is 0 repeat this step. If Ready/nRW is 1, the first
write request has completed successfully and the second has been placed.

3. Scan in the address 0. The rest of the fields are not important.

Scan out 40 bits. If Ready/nRW is 0 repeat this step. If Ready/nRW is 1, the
second write request has completed successfully. The scanned-in null request has
avoided the generation of another request.

A typical sequence for reading registers is as follows:

1. Scan in the address of a first register and a 0 to indicate that this is a read request.
The Data field is not important.

2. Scan in the address of a second register and a 0 to indicate that this is a read
request.

Scan out 40 bits. If Ready/nRW is 0 then repeat this step. If Ready/nRW is 1, the
first read request has completed successfully and the next scanned-out 32 bits are
the requested value. The second read request was placed at the Update-DR state.

3. Scan in the address 0 (the rest of the fields are not important).

Scan out 40 bits. If Ready/nRW is 0 then repeat this step. If Ready/nRW is 1, the
second read request has completed successfully and the next scanned-out 32 bits
are the requested value. The scanned-in null request has avoided the generation of
another request.

CPUTDI TDO

Ready/nRW

nRW

ReqCompl

0

Data[31:0]

323339 1

Address[6:0]
13-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
Table 13-2 shows the register map scan chain 7 register map. This is similar to the CP14
debug register map.

The following points apply to the use of scan chain 7:

• Every time there is a request to read the PC, a sample of its value is copied into
scan chain 7. Writes are ignored. The sampled value can be used for profiling of
the code. See Interpreting the PC samples on page 13-22 for details of how to
interpret the sampled value.

• When accessing registers using scan chain 7, the processor can be either in debug
state or in normal state. This implies that breakpoints, watchpoints, and vector
catches can be programmed through the Debug Test Access Port even if the
processor is running. However, although a PC read can be requested in debug
state, the result is Undefined.

Table 13-2 Scan chain 7 register map

Address[6:0]
Register
number

Abbreviation Register name

b0000000 0 NULL No request register

b0000001-b0000110 1-6 - Reserved

b0000111 7 VCR Vector Catch Register

b0001000 8 PC Program counter

b0010011-b0111111 19-63 - Reserved

b1000000-b1000101 64-69 BVRya

a. y is the decimal representation for the binary number Address[3:0]

Breakpoint Value Registers

b1000110-b1001111 70-79 - Reserved

b1010000-b1010101 80-85 BCRya Breakpoint Control Registers

b1010110-b1011111 86-95 - Reserved

b1100000-b1100001 96-97 WVRya Watchpoint Value Registers

b1100010-1b101111 98-111 - Reserved

b1110000-b1110001 112-113 WCRya Watchpoint Control Registers

b1110010-b1111111 114-127 - Reserved
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-21
Unrestricted Access Non-Confidential

Debug Test Access Port
Interpreting the PC samples

The PC values read correspond to instructions committed for execution, including those
that failed their condition code. However, these values are offset as described in
Table 12-15 on page 12-31. These offsets are different for different processor states, so
additional information is required:

• If a read request to the PC completes and Data[1:0] equals b00, the read value
corresponds to an ARM state instruction whose 30 most significant bits of the
offset address (instruction address + 8) are given in Data[31:2].

• If a read request to the PC completes and Data[0] equals b1, the read value
corresponds to a Thumb state instruction whose 31 most significant bits of the
offset address (instruction address + 4) are given in Data[31:1].

• If a read request to the PC completes and Data[1:0] equals b10, the read value
corresponds to a Jazelle state instruction whose 30 most significant bits of its
address are given in Data[31:2] (the offset is 0). Because of the state encoding, the
lower two bits of the Java address are not sampled. However, the information
provided is enough for profiling the code.

• If the PC is read while the processor is in debug state, the result is Unpredictable.

Scan chains 8-15

These scan chains are reserved.

Scan chains 16-31

These scan chains are unassigned.

13.6.6 Reset

The DBGTAP is reset either by asserting DBGnTRST, or by clocking it while the
DBGTAPSM is in the Test-Logic-Reset state. The processor, including CP14 debug
logic, is not affected by these events. See Reset modes on page 11-4 and CP14 registers
reset on page 12-25 for details.
13-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
13.7 Using the Debug Test Access Port

This section contains the following subsections:

• Entering and leaving debug state

• Executing instructions in debug state

• Using the ITRsel IR instruction on page 13-24

• Transferring data between the host and the core on page 13-26

• Using the debug communications channel on page 13-26

• Target to host debug communications channel sequence on page 13-27

• Host to target debug communications channel on page 13-28

• Transferring data in debug state on page 13-28

• Example sequences on page 13-29.

13.7.1 Entering and leaving debug state

These debug sequences are described in detail in Debug sequences on page 13-33.

13.7.2 Executing instructions in debug state

When an MP11 CPU is in debug state, it can be forced to execute ARM state
instructions using the DBGTAP. Two registers are used for this purpose, the Instruction
Transfer Register (ITR) and the Data Transfer Register (DTR).

The ITR is used to insert an instruction into the processor pipeline. An ARM state
instruction can be loaded into this register using scan chain number 4. When the
instruction is loaded, and INTEST or EXTEST is selected, and scan chain 4 or 5 is selected,
the instruction can be issued to the core by making the DBGTAPSM go through the
Run-Test/Idle state, provided certain conditions are met (described in this section). This
mechanism enables re-executing the same instruction over and over without having to
reload it.

The DTR can be used in conjunction with the ITR to transfer data in and out of the core.
For example, to read out the value of an ARM register:

1. issue an MCR p14,0,<Rd>,c0,c5,0 instruction to the core to transfer the Rd contents
to the c5 register

2. scan out the wDTR.

The DSCR[13] execute ARM instruction enable bit controls the activation of the ARM
instruction execution mechanism. If this bit is cleared, no instruction is issued to the
core when the DBGTAPSM goes through Run-Test/Idle. Setting this bit while the core
is not in debug state leads to Unpredictable behavior. If the core is in debug state and
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-23
Unrestricted Access Non-Confidential

Debug Test Access Port
this bit is set, the Ready and the sticky precise Data Abort flags condition the updates
of the ITR and the instruction issuing as described in Scan chain 4, Instruction Transfer
Register (ITR) on page 13-13.

As an example, this sequence stores out the contents of the ARM register r0:

1. Scan_N into the IR.

2. 1 into the SCREG.

3. INTEST into the IR.

4. Scan out the contents of the DSCR. This action clears the sticky precise Data
Abort and sticky imprecise Data Abort flags.

5. EXTEST into the IR.

6. Scan in the previously read value with the DSCR[13] execute ARM instruction
enable bit set.

7. Scan_N into the IR.

8. 4 into the SCREG.

9. EXTEST into the IR.

10. Scan the MCR p14,0,R0,c0,c5,0 instruction into the ITR.

11. Go through the Run-Test/Idle state of the DBGTAPSM.

12. Scan_N into the IR.

13. 5 into the SCREG.

14. INTEST into the IR.

15. Scan out 34 bits. The 33rd bit indicates if the instruction has completed. If the bit
is clear, repeat this step again.

16. The least significant 32 bits hold the contents of r0.

13.7.3 Using the ITRsel IR instruction

When the ITRsel instruction is loaded into the IR, at the Update-IR state, the DBGTAP
controller behaves as if EXTEST and scan chain 4 are selected, but SCREG retains its
value. It can be used to speed up certain debug sequences.

Figure 13-12 on page 13-25 shows the effect of the ITRsel IR instruction.
13-24 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
Figure 13-12 Behavior of the ITRsel IR instruction

Consider for example the preceding sequence to store out the contents of ARM register
r0. This is the same sequence using the ITRsel instruction:

1. Scan_N into the IR.

2. 1 into the SCREG.

3. INTEST into the IR.

4. Scan out the contents of the DSCR. This action clears the sticky precise Data
Abort and sticky imprecise Data Abort flags.

5. EXTEST into the IR.

6. Scan in the previously read value with the DSCR[13] execute ARM instruction
enable bit set.

7. Scan_N into the IR.

8. 5 into the SCREG.

9. ITRsel into the IR. Now the DBGTAP controller works as if EXTEST and scan chain
4 is selected.

10. Scan the MCR p14,0,R0,c0,c5,0 instruction into the ITR.

11. Go through the Run-Test/Idle state of the DBGTAPSM.

12. INTEST into the IR. Now INTEST and scan chain 5 are selected.

13. Scan out 34 bits. The 33rd bit indicates if the instruction has completed. If the bit
is clear, repeat this step again.

01=ITRSEL?

IR SCREG

EXTEST

01

4

Current IR

instruction

Current

scan chain

Yes
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-25
Unrestricted Access Non-Confidential

Debug Test Access Port
14. The least significant 32 bits hold the contents of r0.

The number of steps has been reduced from 16 to 14. However, the bigger reduction
comes when reading additional registers. Using the ITRsel instruction there are 6 extra
steps (9 to 14), compared with 10 extra steps (7 to 16) in the first sequence.

13.7.4 Transferring data between the host and the core

There are two ways in which a DBGTAP debugger can send or receive data from the
core:

• using the DCC, when the respective MP11 CPU is not in debug state

• using the instruction execution mechanism described in Executing instructions in
debug state on page 13-23, when the core is in debug state.

This is described in:

• Using the debug communications channel

• Target to host debug communications channel sequence on page 13-27

• Host to target debug communications channel on page 13-28

• Transferring data in debug state on page 13-28

• Example sequences on page 13-29.

13.7.5 Using the debug communications channel

The DCC is defined as the set of resources that the external DBGTAP debugger uses to
communicate with a piece of software running on the core.

The DCC in the ARM11 MPCore processor is implemented using the two physically
separate DTRs and a full/empty bit pair to augment each register, creating a
bidirectional data port. One register can be read from the DBGTAP and is written from
the processor. The other register is written from the DBGTAP and read by the processor.
The full/empty bit pair for each register is automatically updated by the debug unit
hardware, and is accessible to both the DBGTAP and to software running on the
processor.

At the core side, the DCC resources are the following:

• CP14 Debug Transfer Register c5 (DTR). Data coming from a DBGTAP
debugger can be read by an MRC or STC instruction addressed to this register. The
core can write to this register any data intended for the DBGTAP debugger, using
an MCR or LDC instruction. Because the DTR comprises both a read (rDTR) and a
write portion (wDTR), a piece of data written by the core and another coming
from the DBGTAP debugger can be held in this register at the same time.
13-26 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
• Some flags and control bits in CP14 Debug Status and Control Register c1
(DSCR):

DSCR[12] User mode access to DCC disable bit. If this bit is set, only
privileged software can access the DCC. That is, access the
DSCR and the DTR.

DSCR[29] The wDTRfull flag. When clear, this flag indicates to the
core that the wDTR is ready to receive data from the core.

DSCR[30] The rDTRfull flag. When set, this flag indicates to the core
that there is data available to read at the DTR.

At the DBGTAP side, the resources are the following:

• Scan chain 5 (see Scan chain 5 on page 13-15). The only part of this scan chain
that it is not used for the DCC is the Ready flag. The rest of the scan chain is to
be used in the following way:

rDTR When the DBGTAPSM goes through the Update-DR state
with EXTEST and scan chain 5 selected, and the nRetry flag
set, the contents of the Data field are loaded into the rDTR.
This is how the DBGTAP debugger sends data to the
software running on the core.

wDTR When the DBGTAPSM goes through the Capture-DR state
with INTEST and scan chain 5 selected, the contents of the
wDTR are loaded into the Data field of the scan chain. This
is how the DBGTAP debugger reads the data sent by the
software running on the core.

Valid flag When set, this flag indicates to the DBGTAP debugger that
the contents of the wDTR that it has captured are valid.

nRetry flag When set, this flag indicates to the DBGTAP debugger that
the scanned-in Data field has been successfully written into
the rDTR at the Update-DR state.

13.7.6 Target to host debug communications channel sequence

The DBGTAP debugger can use the following sequence for receiving data from the
core:

1. Scan_N into the IR.

2. 5 into the SCREG.

3. INTEST into the IR.

4. Scan out 34 bits of data. If the Valid flag is clear repeat this step again.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-27
Unrestricted Access Non-Confidential

Debug Test Access Port
5. The least significant 32 bits hold valid data.

6. Go to step 4 again for reading out more data.

13.7.7 Host to target debug communications channel

The DBGTAP debugger can use the following sequence for sending data to the core:

1. Scan_N into the IR.

2. 5 into the SCREG.

3. EXTEST into the IR.

4. Scan in 34 bits, the least significant 32 holding the word to be sent. At the same
time, 34 bits were scanned out. If the nRetry flag is clear repeat this step again.

5. Now the data has been written into the rDTR. Go to step 4 again for sending in
more data.

13.7.8 Transferring data in debug state

When the core is in debug state, the DBGTAP debugger can transfer data in and out of
the core using the instruction execution facilities described in Executing instructions in
debug state on page 13-23 in addition to scan chain 5. You must ensure that the
DSCR[13] execute ARM instruction enable bit is set for the instruction execution
mechanism to work. When it is set, the interface for the DBGTAP debugger consists of
the following:

• Scan chain 4 (see Scan chain 4, Instruction Transfer Register (ITR) on
page 13-13). It is used for loading an instruction and for monitoring the status of
the execution:

ITR When the DBGTAPSM goes through the Update-DR state
with EXTEST and scan chain 4 selected, and the Ready flag
set, the ITR is loaded with the least significant 32 bits of the
scan chain.

InstCompl flag When clear, this flag indicates to the DBGTAP debugger
that the last issued instruction has not yet completed
execution. While Ready (captured version of InstCompl) is
clear, no updates of the ITR and the rDTR occur and the
instruction execution mechanism is disabled. No instruction
is issued when going through Run-Test/Idle.
13-28 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
• Scan chain 5 (see Scan chain 5 on page 13-15). It is used for writing in or reading
out the data and for monitoring the state of the execution:

rDTR When the DBGTAPSM goes through the Update-DR state
with EXTEST and scan chain 5 selected, and the Ready flag
set, the contents of the Data field are loaded into the rDTR.

wDTR When the DBGTAPSM goes through the Capture-DR state
with INTEST or EXTEST selected, the contents of the wDTR
are loaded into the Data field of the scan chain.

InstCompl flag When clear, this flag indicates to the DBGTAP debugger
that the last issued instruction has not yet completed
execution. While Ready (captured version of InstCompl) is
clear, no updates of the ITR and the rDTR occur and the
instruction execution mechanism is disabled. No instruction
is issued when going through Run-Test/Idle.

• Some flags and control bits at CP14 debug register c1 (DSCR):

DSCR[13] Execute ARM instruction enable bit. This bit must be set for
the instruction execution mechanism to work.

Sticky precise Data Abort flag
DSCR[6]. When set, this flag indicates to the DBGTAP
debugger that a precise Data Abort occurred while
executing an instruction in debug state. While this bit is set,
the instruction execution mechanism is disabled. When this
flag is set InstCompl stays HIGH, and additional attempts to
execute an instruction appear to succeed but do not execute.

Sticky imprecise Data Abort flag
DSCR[7]. When set, this flag indicates to the DBGTAP
debugger that an imprecise Data Abort occurred while
executing an instruction in debug state. This flag does not
disable the debug state instruction execution.

13.7.9 Example sequences

This section includes some example sequences to show how to transfer data between
the DBGTAP debugger and the core when it is in debug state. The examples are related
to accessing the processor memory.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-29
Unrestricted Access Non-Confidential

Debug Test Access Port
Target to host transfer

The DBGTAP debugger can use the following sequence for reading data from the
processor memory system. The sequence assumes that the ARM register r0 contains a
pointer to the address of memory at which the read has to start:

1. Scan_N into the IR.

2. 1 into the SCREG.

3. INTEST into the IR.

4. Scan out the contents of the DSCR. This clears the sticky precise Data Abort and
sticky imprecise Data Abort flags.

5. Scan_N into the IR.

6. 4 into the SCREG.

7. EXTEST into the IR.

8. Scan in the LDC p14,c5,[R0],#4 instruction into the ITR.

9. Scan_N into the IR.

10. 5 into the SCREG.

11. INTEST into the IR.

12. Go through Run-Test/Idle state. The instruction loaded into the ITR is issued to
the processor pipeline.

13. Scan out 34 bits of data. If the Ready flag is clear repeat this step again.

14. The instruction has completed execution. Store the least significant 32 bits.

15. Go to step 12 again for reading out more data.

16. Scan_N into the IR.

17. 1 into the SCREG.

18. INTEST into the IR.

19. Scan out the contents of the DSCR. This clears the sticky precise Data Abort and
sticky imprecise Data Abort flags. If the sticky precise Data Abort is set, this
means that during the sequence one of the instructions caused a precise Data
Abort. All the instructions that follow are not executed. Register r0 points to the
next word to be read, and after the cause for the abort has been fixed the sequence
resumes at step 5.
13-30 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
Note
 If the sticky imprecise Data Aborts flag is set, an imprecise Data Abort has

occurred and the sequence restarts at step 1 after the cause of the abort is fixed
and r0 is reloaded.

Host to target transfer

The DBGTAP debugger can use the following sequence for writing data to the
processor memory system. The sequence assumes that the ARM register r0 contains a
pointer to the address of memory at which the write has to start:

1. Scan_N into the IR.

2. 1 into the SCREG.

3. INTEST into the IR.

4. Scan out the contents of the DSCR. This clears the sticky precise Data Abort and
sticky imprecise Data Abort flags.

5. Scan_N into the IR.

6. 4 into the SCREG.

7. EXTEST into the IR.

8. Scan in the STC p14,c5,[R0],#4 instruction into the ITR.

9. Scan_N into the IR.

10. 5 into the SCREG.

11. EXTEST into the IR.

12. Scan in 34 bits, the least significant 32 holding the word to be sent. At the same
time, 34 bits are scanned out. If the Ready flag is clear, repeat this step.

13. Go through Run-Test/Idle state.

14. Go to step 12 again for writing in more data.

15. Scan in 34 bits. All the values are don’t care. At the same time, 34 bits are scanned
out. If the Ready flag is clear, repeat this step. The don’t care value is written into
the rDTR (Update-DR state) after Ready is seen set (Capture-DR state). However,
the STC instruction is not re-issued because the DBGTAPSM does not go through
Run-Test/Idle.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-31
Unrestricted Access Non-Confidential

Debug Test Access Port
16. Scan_N into the IR.

17. 1 into the SCREG.

18. INTEST into the IR.

19. Scan out the contents of the DSCR. This clears the sticky precise Data Abort and
sticky imprecise Data Abort flags. If the sticky precise Data Abort is set, this
means that during the sequence one of the instructions caused a precise Data
Abort. All the instructions that follow are not executed. Register r0 points to the
next word to be written, and after the cause for the abort has been fixed the
sequences resumes at step 5.

Note
 If the sticky imprecise Data Abort flag is set, an imprecise Data Abort has

occurred and the sequence restarts at step 1 after the cause of the abort is fixed
and c0 is reloaded.
13-32 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
13.8 Debug sequences

This section describes some sequences of operations that a debugger might execute as
part of the debugging process. The purpose of this section is to show how the debug
features work by providing a hypothetical usage model. A developer of a debugger for
the ARM11 MPCore processor must not use the information provided in this section as
a recommended implementation.

In Halting debug-mode, the processor stops when a debug event occurs enabling the
DBGTAP debugger to do the following:

1. Determine and modify the current state of the processor and memory.

2. Set up breakpoints, watchpoints, and vector catches.

3. Restart the processor.

You enable this mode by setting CP14 debug DSCR[14] bit, that can only be done by
the DBGTAP debugger.

From here it is assumed that the debug unit is in Halting debug-mode. Monitor
debug-mode debugging is described in Monitor debug-mode debugging on page 13-49.

13.8.1 Debug macros

The debug code sequences in this section are written using a fixed set of macros. The
mapping of each macro into a debug scan chain sequence is given in this section.

Scan_N <n>

Select scan chain register number <n>:

1. Scan the Scan_N instruction into the IR.

2. Scan the number <n> into the DR.

INTEST

1. Scan the INTEST instruction into the IR.

EXTEST

1. Scan the EXTEST instruction into the IR.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-33
Unrestricted Access Non-Confidential

Debug Test Access Port
ITRsel

1. Scan the ITRsel instruction into the IR.

Restart

1. Scan the Restart instruction into the IR.

2. Go to the DBGTAP controller Run-Test/Idle state so that the processor exits
debug state.

INST <instr> [stateout]

Go through Capture-DR, go to Shift-DR, scan in an ARM instruction to be read and
executed by the core and scan out the Ready flag, go through Update-DR. The ITR
(scan chain 4) and EXTEST must be selected when using this macro.

1. Scan in:

• Any value for the InstCompl flag. This bit is read-only.

• 32-bit assembled code of the instruction (instr) to be executed, for
ITR[31:0].

2. The following data is scanned out:

• The value of the Ready flag, to be stored in stateout.

• 32 bits to be ignored. The ITR is write-only.

DATA <datain> [<stateout> [dataout]]

Go through Capture-DR, go to Shift-DR. Scan in a data item and scan out another one,
go through Update-DR. Either the DTR (scan chain 5) or the DSCR (scan chain 1) must
be selected when using this macro.

1. If scan chain 5 is selected, scan in:

• Any value for the nRetry or Valid flag. These bits are read-only.

• Any value for the InstCompl flag. This bit is read-only.

• 32-bit datain value for rDTR[31:0].

2. The following data is scanned out:

• The contents of wDTR[31:0], to be stored in dataout.

• If the DSCR[13] execute ARM instruction enable bit is set, the value of the
Ready flag is stored in stateout.
13-34 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
• If the DSCR[13] execute ARM instruction enable bit is clear, the nRetry or
Valid flag (depending on whether EXTEST or INTEST is selected) is stored in
stateout.

3. If scan chain 1 is selected, scan in:

• 32-bit datain value for DSCR[31:0].

Stateout and dataout fields are not used in this case.

DATAOUT <dataout>

1. Scan out a data value. DSCR (scan chain 1) and INTEST must be selected when
using this macro.

2. If scan chain 1 is selected, scan out the contents of the DSCR, to be stored in
dataout.

3. The scanned-in value is discarded, because INTEST is selected.

REQ <address> <data> <nR/W> [<stateout> [dataout]]

Go through Capture-DR, go to Shift-DR, scan in a request and scan out the result of the
former one, go through Update-DR. Scan chain 7, and either INTEST or EXTEST, must be
selected when using this macro.

1. Scan in:

• 7-bit address value for Address[6:0]

• 32-bit data value for Data[31:0]

• 1-bit nR/W value (0 for read and 1 for write) for the Ready/nRW field.

2. Scan out:

• the value of the Ready/nRW bit, to be stored in stateout

• the contents of the Data field, to be stored in dataout.

RTI

1. Go through Run-Test/Idle DBGTAPSM state. This forces the execution of the
instruction currently loaded into the ITR, provided the execute ARM instruction
enable bit (DSCR[13]) is set, the Ready flag was captured as set, and the sticky
precise Data Abort flag is cleared.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-35
Unrestricted Access Non-Confidential

Debug Test Access Port
13.8.2 General setup

You must setup the following control bits before DBGTAP debugging can take place:

• DSCR[14] Halting or Monitor debug-mode bit must be set to 1. It resets to 0 on
power-up.

• DSCR[6] sticky precise Data Abort flag must be cleared down, so that aborts are
not detected incorrectly immediately after startup.

The DSCR must be read, the DSCR[14] bit set, and the new value written back. The
action of reading the DSCR automatically clears the DSCR[6] sticky precise Data Abort
flag.

All individual breakpoints, watchpoints, and vector catches reset disabled on power-up.

13.8.3 Forcing the processor to halt

Scan the Halt instruction into the DBGTAP controller IR and go through Run-Test/Idle.

13.8.4 Entering debug state

To enter debug state you must:

1. Check whether the core has entered debug state, as follows:

SCAN_N1 ; select DSCR
INTEST
LOOP

DATAOUT readDSCR
UNTILreadDSCR[0]==1; until Core Halted bit is set

2. Save DSCR, as follows:

DATAOUT readDSCR
Save value in readDSCR

3. Save wDTR (in case it contains some data), as follows:

SCAN_N 5 ; select DTR
INTEST
DATA 0x00000000 Valid wDTR
If Valid==1 then Save value in wDTR

4. Set the DSCR[13] execute ARM instruction enable bit, so instructions can be
issued to the core from now:

SCAN_N 1 ; select DSCR
EXTEST
DATA modifiedDSCR ; modifiedDSCR equals readDSCR with bit

; DSCR[13] set
13-36 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
5. Before executing any instruction in debug state you have to drain the Write
Buffer. This ensures that no imprecise Data Aborts can return at a later point:

SCAN_N 4 ; select ITR
EXTEST
INST MCR p15,0,Rd,c7,c10,4 ; data synchronization barrier
LOOP

LOOP

SCAN_N 4 ; select ITR
EXTEST
RTI
INST 0x0 Ready

Until Ready == 1
SCAN_N 1
INTEST
DATAOUT readDSCR

Until readDSCR[7]==0
SCAN_N 4
EXTEST
INST NOP ;NOP takes the
RTI ;imprecise Data Aborts
LOOP

INST 0 Ready
Until Ready == 1
SCAN_N 1
INTEST
DATAOUT readDSCR ;clears DSCR[7]

Note
 If there is a lingering imprecise Data Abort at the time of executing a Data

Synchronization Barrier, the ARM architecture does not define it if this
instruction completes successfully, or if it is cancelled by this abort. Therefore,
this sequence issues the Data Synchronization Barrier repeatedly until it
completes successfully. An additional NOP instruction is inserted at the end of the
Data Synchronization Barrier sequence in case the device behavior is to recognize
the imprecise Data Abort after this Data Synchronization Barrier instruction
completes.

6. Store out r0. It is going to be used to save the rDTR. Use the standard sequence
of Reading a current mode ARM register in the range r0-r14 on page 13-40. Scan
chain 5 and INTEST are now selected.

7. Save the rDTR and the rDTRempty bit in three steps:

a. The rDTRempty bit is the inverted version of DSCR[30] (saved in step 2).
If DSCR[30] is clear (register empty) there is no requirement to read the
rDTR, go to 7.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-37
Unrestricted Access Non-Confidential

Debug Test Access Port
b. Transfer the contents of rDTR to r0:
ITRSEL ; select the ITR and EXTEST
INST MRC p14,0,R0,c0,c5,0 ; instruction to copy CP14’s debug

; register c5 into R0
RTI
LOOP

INST 0x00000000 Ready
UNTIL Ready==1 ; wait until the instruction ends

c. Read r0 using the standard sequence of Reading a current mode ARM
register in the range r0-r14 on page 13-40.

8. Store out CPSR using the standard sequence of Reading the CPSR/SPSR on
page 13-41.

9. Store out PC using the standard sequence of Reading the PC on page 13-41.

10. Adjust the PC to enable you to resume execution later:

• subtract 0x8 from the stored value if the processor was in ARM state when
entering debug state

• subtract 0x4 from the stored value if the processor was in Thumb state when
entering debug state

• subtract 0x0 from the stored value if the processor was in Jazelle state when
entering debug state.

These values are not dependent on the debug state entry method, (see Behavior of
the PC in debug state on page 12-36). The entry state can be determined by
examining the T and J bits of the CPSR.

11. Cache and MMU preservation measures must also be taken here. This includes
saving all the relevant CP15 registers using the standard coprocessor register
reading sequence described in Coprocessor register reads and writes on
page 13-46.

13.8.5 Leaving debug state

To leave debug state:

1. Restore standard ARM registers for all modes, except r0, PC, and CPSR.

2. Cache and MMU restoration must be done here. This includes writing the saved
registers back to CP15.

3. Ensure that rDTR and wDTR are empty:

ITRSEL ; select the ITR and EXTEST
INST MCR p14,0,R0,c0,c5,0 ; instruction to copy R0 into

; CP14 debug register c5
13-38 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
RTI
LOOP

INST 0x00000000 Ready
UNTIL Ready==1 ; wait until the instruction ends
SCAN_N 5
INTEST
DATA 0x0 Valid wDTR

4. If the wDTR did not contain any valid data on debug state entry go to step 5.
Otherwise, restore wDTRfull and wDTR (uses r0 as a temporary register) in two
steps.

a. Load the saved wDTR contents into r0 using the standard sequence of
Writing a current mode ARM register in the range r0-r14 on page 13-40.
Now scan chain 5 and EXTEST are selected

b. Transfer r0 into wDTR:
ITRSEL ; select the ITR and EXTEST
INST MCR p14,0,R0,c0,c5,0 ; instruction to copy R0 into

; CP14 debug register c5
RTI
LOOP

INST 0x00000000 Ready
UNTIL Ready==1 ; wait until the instruction ends

5. Restore CPSR using the standard CPSR writing sequence described in Writing
the CPSR/SPSR on page 13-41.

6. Restore the PC using the standard sequence of Writing the PC on page 13-42.

7. Restore r0 using the standard sequence of Writing a current mode ARM register
in the range r0-r14 on page 13-40. Now scan chain 5 and EXTEST are selected.

8. Restore the DSCR with the DSCR[13] execute ARM instruction enable bit clear,
so no more instructions can be issued to the core:

SCAN_N 1 ; select DSCR
EXTEST
DATA modifiedDSCR ; modifiedDSCR equals the saved contents

; of the DSCR with bit DSCR[13] clear

9. If the rDTR did not contain any valid data on debug state entry go to step 10.
Otherwise, restore the rDTR and rDTRempty flag:

SCAN_N 5 ; select DTR
EXTEST
DATA Saved_rDTR ; rDTRempty bit is automatically cleared

; as a result of this action

10. Restart processor:

RESTART
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-39
Unrestricted Access Non-Confidential

Debug Test Access Port
11. Wait until the core is restarted:

SCAN_N 1 ; select DSCR
INTEST
LOOP

DATAOUT readDSCR
UNTIL readDSCR[1]==1 ; until Core Restarted bit is set

13.8.6 Reading a current mode ARM register in the range r0-r14

Use the following sequence to read a current mode ARM register in the range r0-r14:

SCAN_N 5 ; select DTR
ITRSEL ; select the ITR and EXTEST
INST MCR p14,0,Rd,c0,c5,0 ; instruction to copy Rd into CP14 debug

; register c5
RTI
INTEST ; select the DTR and INTEST
LOOP

DATA 0x00000000 Ready readData
UNTIL Ready==1 ; wait until the instruction ends
Save value in readData

Note
 Register r15 cannot be read in this way because the effect of the required MCR is to take
an Undefined exception.

13.8.7 Writing a current mode ARM register in the range r0-r14

Use the following sequence to write a current mode ARM register in the range r0-r14:

SCAN_N5 ; select DTR
ITRSEL ; select the ITR and EXTEST
INST MRC p14,0,Rd,c0,c5,0 ; instruction to copy CP14 debug

; register c5 into Rd
EXTEST ; select the DTR and EXTEST
DATAData2Write
RTI
LOOP

DATA 0x00000000 Ready
UNTILReady==1 ; wait until the instruction ends

Note
 Register r15 cannot be written in this way because the MRC instruction used would update
the CPSR flags rather than the PC.
13-40 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
13.8.8 Reading the CPSR/SPSR

Here r0 is used as a temporary register:

1. Move the contents of CPSR/SPSR to r0.

SCAN_N 5 ; select DTR
ITRSEL ; select the ITR and EXTEST
INST MRS R0,CPSR ; or SPSR
RTI
LOOP
 INST 0x00000000 Ready
UNTIL Ready==1 ; wait until the instruction ends

2. Perform the read of r0 using the standard sequence described in Reading a current
mode ARM register in the range r0-r14 on page 13-40. Scan chain 5 and ITRsel
are already selected.

13.8.9 Writing the CPSR/SPSR

Here r0 is used as a temporary register:

1. Load the required value into r0 using the standard sequence described in Writing
a current mode ARM register in the range r0-r14 on page 13-40. Now scan chain
5 and EXTEST are selected.

2. Move the contents of r0 to CPRS/SPRS:

ITRSEL ; select the ITR and EXTEST
INST MSR CPSR,R0 ; or SPSR
RTI
LOOP
 INST 0x00000000 Ready
UNTIL Ready==1 ; wait until the instruction ends

It is not a problem to write to the T and J bits because they have no effect in the
execution of instructions while in debug state.

The CPSR mode and control bits can be written in User mode when the core is in debug
state. This is essential so that the debugger can change mode and then get at the other
banked registers.

13.8.10 Reading the PC

Here r0 is used as a temporary register:

1. Move the contents of the PC to r0:

ITRSEL ; select the ITR and EXTEST
INST MOV R0,PC
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-41
Unrestricted Access Non-Confidential

Debug Test Access Port
RTI
LOOP
 INST 0x00000000 Ready
UNTIL Ready==1 ; wait until the instruction ends

2. Read the contents of r0 using the standard sequence described in Reading a
current mode ARM register in the range r0-r14 on page 13-40.

13.8.11 Writing the PC

Here r0 is used as a temporary register:

1. Load r0 with the address to resume using the standard sequence described in
Writing a current mode ARM register in the range r0-r14 on page 13-40. Now
scan chain 5 and EXTEST are selected.

2. Move the contents of r0 to the PC:

ITRSEL ; select the ITR and EXTEST
INST MOV PC,R0
RTI
LOOP
 INST 0x00000000 Ready
UNTIL Ready==1 ; wait until the instruction ends

13.8.12 General notes about reading and writing memory

On the MP11 CPU, an abort occurring in debug state causes an Abort exception entry
sequence to start, and so changes mode to Abort mode, and writes to r14_abt and
SPSR_abt. This means that the Abort mode registers must be saved before performing
a debug state memory access.

The word-based read and write sequences are substantially more efficient than the
halfword and byte sequences. This is because the ARM LDC and STC instructions always
perform word accesses, and this can be used for efficient access to word width memory.
Halfword and byte accesses must be done with a combination of loads or stores, and
coprocessor register transfers, which is much less efficient.

When writing data, the instruction cache might become incoherent. In those cases,
either a line or the whole instruction cache must be invalidated. In particular, the
instruction cache must be invalidated before setting a software breakpoint or
downloading code.

13.8.13 Reading memory as words

This sequence is optimized for a long sequential read.
13-42 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
This sequence assumes that r0 has been set to the address to load data from prior to
running this sequence. r0 is post-incremented so that it can be used by successive reads
of memory.

1. Load and issue the LDC instruction:

SCAN_N 5 ; select DTR
ITRSEL ; select the ITR and EXTEST
INST LDC p14,c5,[R0],#4 ; load the content of the position of

; memory pointed by R0 into wDTR and
; increment R0 by 4

RTI

2. The DTR is selected to read the data:

INTEST ; select the DTR and INTEST

3. This loop keeps on reading words, but it stops before the latest read. It is skipped
if there is only one word to read:

FOR(i=1; i <= (Words2Read-1); i++) DO
LOOP

DATA 0x00000000 Ready readData ; gets the result of
; the previous read

RTI ; issues the next read
UNTIL Ready==1 ; wait until the instruction ends
Save value in readData

ENDFOR

4. Wait for the last read to finish:

LOOP
 DATA 0x00000000 Ready readData
UNTIL Ready==1 ; wait until instruction ends
Save value in readData

5. Now check whether an abort occurred:

SCAN_N 1 ; select DSCR
INTEST
DATAOUT DSCR ; this action clears the DSCR[6] flag

6. Scan out the contents of the DSCR. This clears the sticky precise Data Abort and
sticky imprecise Data Abort flags. If the sticky precise Data Abort is set, this
means that during the sequence one of the instructions caused a precise Data
Abort. All the instructions that follow are not executed. Register r0 points to the
next word to be written, and after the cause for the abort has been fixed the
sequences resumes at step 1.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-43
Unrestricted Access Non-Confidential

Debug Test Access Port
Note
 If the sticky imprecise Data Aborts flag is set, an imprecise Data Abort has

occurred and the sequence restarts at step 1 after the cause of the abort is fixed
and r0 is reloaded.

13.8.14 Writing memory as words

This sequence is optimized for a long sequential write.

This sequence assumes that r0 has been set to the address to store data to prior to
running this sequence. Register r0 is post-incremented so that it can be used by
successive writes to memory:

1. The instruction is loaded:

SCAN_N 5 ; select DTR
ITRSEL ; select the ITR and EXTEST
INST STC p14,c5,[R0],#4 ; store the contents of rDTR into the

; position of memory pointed by R0 and
; increment it by 4

EXTEST ; select the DTR and EXTEST

2. This loop writes all the words:

FOR (i=1; i <= Words2Write; i++) DO
LOOP

DATA Data2Write Ready
RTI

UNTIL Ready==1 ; wait until instruction ends
ENDFOR

3. Wait for the last write to finish:

LOOP
 DATA 0x00000000 Ready
UNTIL Ready==1 ; wait until instruction ends

4. Check for aborts, as described in Reading memory as words on page 13-42.

13.8.15 Reading memory as halfwords or bytes

The sequences above cannot be used to transfer halfwords or bytes because LDC and STC
instructions always transfer whole words. Two operations are required to complete a
halfword or byte transfer, from memory to ARM register and from ARM register to
CP14 debug register. Therefore, performance is decreased because the load instruction
cannot be kept in the ITR.
13-44 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
This sequence assumes that r0 has been set to the address to load data from prior to
running the sequence. Register r0 is post-incremented so that it can be used by
successive reads of memory. Register r1 is used as a temporary register:

1. Load and issue the LDRH or LDRB instruction:

ITRSEL ; select the ITR and EXTEST
INST LDRH R1,[R0],#2 ; LDRB R1,[R0],#1 for byte reads
RTI
LOOP
 INST 0x00000000 Ready
UNTIL Ready==1 ; wait until instruction ends

2. Use the standard sequence described in Reading a current mode ARM register in
the range r0-r14 on page 13-40 on register r1. Now scan chain 5 and INTEST are
selected.

3. If there are more halfwords or bytes to be read go to 1.

4. Check for aborts, as described in Reading memory as words on page 13-42.

13.8.16 Writing memory as halfwords/bytes

This sequence assumes that r0 has been set to the address to store data to prior to
running this sequence. Register r0 is post-incremented so that it can be used by
successive writes to memory. Register r1 is used as a temporary register:

1. Write the halfword/byte onto r1 using the standard sequence described in Writing
a current mode ARM register in the range r0-r14 on page 13-40. Scan chain 5 and
EXTEST are selected.

2. Write the contents of r1 to memory:

ITRSEL ; select the ITR and EXTEST
INST STRH R1,[R0],#2 ; STRB R1,[R0],#1 for byte writes
RTI
LOOP
 INST 0x00000000 Ready
UNTIL Ready==1 ; wait until instruction ends

3. If there are more halfwords or bytes to be read go to 1.

4. Check for aborts as described in Reading memory as words on page 13-42.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-45
Unrestricted Access Non-Confidential

Debug Test Access Port
13.8.17 Coprocessor register reads and writes

The MP11 CPU can execute coprocessor instructions while in debug state. Therefore,
the straightforward method to transfer data between a coprocessor and the DBGTAP
debugger is using an ARM register temporarily. For this method to work, the
coprocessor must be able to transfer all its registers to the core using coprocessor
transfer instructions.

13.8.18 Reading coprocessor registers

1. Load the value into ARM register r0:

ITRSEL ; select the ITR and EXTEST
INST MRC px,y,R0,ca,cb,z
RTI
LOOP
 INST 0x00000000 Ready
UNTIL Ready==1 ; wait until instruction ends

2. Use the standard sequence described in Reading a current mode ARM register in
the range r0-r14 on page 13-40.

13.8.19 Writing coprocessor registers

1. Write the value onto r0, using the standard sequence. See Writing a current mode
ARM register in the range r0-r14 on page 13-40 for more details. Scan chain 5
and EXTEST are selected.

2. Transfer the contents of r0 to a coprocessor register:

ITRSEL ; select the ITR and EXTEST
INST MCR px,y,R0,ca,cb,z
RTI
LOOP
 INST 0x00000000 Ready
UNTIL Ready==1 ; wait until instruction ends
13-46 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
13.9 Programming debug events

The following operations are described:

• Reading registers using scan chain 7

• Writing registers using scan chain 7

• Setting breakpoints, watchpoints and vector catches on page 13-48

• Setting software breakpoints on page 13-48.

13.9.1 Reading registers using scan chain 7

A typical sequence for reading registers using scan chain 7 is as follows:

SCAN_N 7 ; select ITR
EXTEST
REQ 1stAddr2Rd 0 0 ;read request for register 1stAddr2read
FOR(i=2; i <= Words2Read; i++) DO

LOOP
REQ ithAddr2Rd 0 0 Ready readData

; ith read request while waiting
UNTIL Ready==1 ; wait until the previous request completes
Save value in readData

ENDFOR
LOOP

REQ 0 0 0 Ready readData ; null request while waiting
UNTIL Ready==1 ; wait until last request completes
Save value in readData

13.9.2 Writing registers using scan chain 7

A typical sequence for writing to a register using scan chain 7 is as follows:

SCAN_N 7 ; select ITR
EXTEST
REQ 1stAddr2Wr 1stData2Wr 0b1 ; write request for register 1stAddr2write
FOR(i=2; i <= Words2Write; i++) DO

LOOP
REQ ithAddr2Wr ithData2Wr 1 Ready

; ith write request while waiting
UNTIL Ready==1 ; wait until the previous request completes

ENDFOR
LOOP

REQ 0 0 0 Ready ; null request while waiting
UNTIL Ready==1 ; wait until last request completes
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-47
Unrestricted Access Non-Confidential

Debug Test Access Port
13.9.3 Setting breakpoints, watchpoints and vector catches

You can program a vector catch debug event by writing to CP14 Debug Vector Catch
Register.

You can program a breakpoint debug event by writing to CP14 debug 64-69 Breakpoint
Value Registers and CP14 debug 80-84 Breakpoint Control Registers.

You can program a watchpoint debug event by writing to CP14 debug 96-97 Watchpoint
Value Registers and CP14 debug 112-113 Watchpoint Control Registers.

Note
 An external debugger can access the CP14 debug registers whether the processor is in
debug state or not, so these debug events can be programmed on-the-fly (while the
processor is in ARM, Thumb or Jazelle state).

See Setting breakpoints, watchpoints, and vector catch debug events on page 12-41 for
the sequences of register accesses to program these software debug events. See Writing
registers using scan chain 7 on page 13-47 to learn how to access CP14 debug registers
using scan chain 7.

13.9.4 Setting software breakpoints

To set a software breakpoint on a certain Virtual Address, a debugger must go through
the following steps:

1. Read memory location and save the actual instruction.

2. Write the BKPT instruction to the memory location.

3. Read memory location again to check that the BKPT instruction was written.

4. If it is not written, determine the reason.

All of these can be done using the previously described sequences.

Note
 Cache coherency issues might arise when writing a BKPT instruction.
13-48 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Debug Test Access Port
13.10 Monitor debug-mode debugging

If DSCR[14] Halting or Monitor debug-mode bit is clear, then the processor takes an
exception (rather than halting) when a software debug event occurs. See Halting
debug-mode debugging on page 12-4 for details.

When the exception is taken, the handler uses the DCC to transmit status information
to, and receive commands from the host using a DBGTAP debugger. Monitor
debug-mode is essential in real-time systems when the core cannot be halted to collect
information.

13.10.1 Receiving data from the core

SCAN_N 5 ; select DTR
INTEST
FOREACH Data2Read

LOOP
DATA 0x00000000 Valid readData

UNTIL Valid==1 ; wait until instruction ends
Save value in readData

END

13.10.2 Sending data to the core

SCAN_N 5 ; select DTR
EXTEST
FOREACH Data2Write

LOOP
DATA Data2Write nRetry

UNTIL nRetry==1 ; wait until instruction ends
END
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 13-49
Unrestricted Access Non-Confidential

Debug Test Access Port
13-50 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 14
Trace Interface Port

This chapter gives a brief description of the Embedded Trace Macrocell (ETM) support
for the MPCore processor. It contains the following section:

• About the ETM interface on page 14-2.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 14-1
Unrestricted Access Non-Confidential

Trace Interface Port
14.1 About the ETM interface

The MPCore trace interface port enables simple connection of an ETM to an MPCore
processor. The ETM provides instruction and data trace.

All inputs are registered immediately inside the ETM unless specified otherwise. All
outputs are driven directly from a register unless specified otherwise. All signals are
relative to CLK unless specified otherwise.

The ETM interface includes the following groups of signals:

• an instruction interface

• a data address interface

• a pipeline advance interface

• a data value interface

• a coprocessor interface

• other connections to the core.

14.1.1 Instruction interface

The primary sampling point for these signals is on entry to write-back. See Typical
pipeline operations on page 1-24. This ensures that instructions are traced correctly
before any data transfers associated with them occur, as required by the ETM protocol.

Table 14-1 shows the instruction interface signals.

ETMIA is used for branch target address calculation.

Other than this the ETM must know, for each cycle, the current address of the
instruction in the Execute stage and the address of any branch phantom progressing
through the pipeline. The MPCore processor does not maintain the address of branch
phantoms, instead it maintains the address to return to if the branch proves to be
incorrectly predicted.

Table 14-1 Instruction interface signals

Signal name Description Qualified by

ETMIACTL[17:0] Instruction interface control signals -

ETMIA[31:0] This is the address for:

ARM executed instruction + 8

Thumb executed instruction + 4

Java executed instruction

IAValid

ETMIARET[31:0] Address to return to if branch is incorrectly predicted IABpValid
14-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Trace Interface Port
The instruction interface can trace a branch phantom without an associated normal
instruction.

In the case of a branch that is predicted taken, the return address (for when the branch
is not taken) is one instruction after the branch. Therefore, the branch address is:

ETMIABP = ETMIARET - <isize>

When the instruction is predicted not taken, the return address is the target of the branch.
However, because the branch was not taken, it must precede the normal instruction.
Therefore, the branch address is:

ETMIABP = ETMIA - <isize>

Table 14-2 shows the ETMIACTL[17:0] instruction interface control signals.

Table 14-2 ETMIACTL[17:0]

Bits Reference name Description Qualified by

[17] IASlotKill Kill outstanding slots. IAException

[16] IADAbort Data Abort. IAException

[15] IAExCancel Exception canceled previous instruction. IAException

[14:12] IAExInt b001 = IRQ

b101 = FIQ

b100 = Java exception

b110 = Imprecise Data Abort

b000 = Other exception.

IAException

[11] IAException Instruction is an exception vector. Nonea

[10] IABounce Kill the data slot associated with this instruction. There is only ever
one of these slots. Used for bouncing coprocessor instructions.

IADataInst

[9] IADataInst Instruction is a data instruction. This includes any load, store, or
CPRT, but does not include preloads.

IAInstValid

[8] IAContextID Instruction updates context ID. IAInstValid

[7] IAIndBr Instruction is an indirect branch. IAInstValid

[6] IABpCCFail Branch phantom failed its condition codes. IABpValid

[5] IAInstCCFail Instruction failed its condition codes. IAInstValid

[4] IAJBit Instruction executed in Jazelle state. IAValid
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 14-3
Unrestricted Access Non-Confidential

Trace Interface Port
Note
 When the nRESETIN signal is asserted, the last instruction traced before the reset
might have ETMIA[31:0] == 0x00000000.

14.1.2 Data address interface

Data addresses are sampled at the ADD stage because they are guaranteed to be in order
at this point. These are assigned a slot number for identification on retirement.

Table 14-3 shows the data address interface signals.

The ETMDACTL[17:0] signals are described in Table 14-4 on page 14-5.

[3] IATBit Instruction executed in Thumb state. IAValid

[2] IABpValid Branch phantom executed this cycle. IAValid

[1] IAInstValid (Non-phantom) instruction executed this cycle. IAValid

[0] IAValid Signals on the instruction interface are valid this cycle. This is kept
LOW when the ETM is powered down.

None

a. The exception signals become valid when the core takes the exception and remain valid until the next instruction is seen at the
exception vector.

Table 14-2 ETMIACTL[17:0] (continued)

Bits Reference name Description Qualified by

Table 14-3 Data address interface signals

Signal name Description Qualified by

ETMDACTL[17:0] Data address interface control signals -

ETMDA[31:3] Address for data transfer DASlot != 00 AND !DACPRT
14-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Trace Interface Port
Table 14-4 ETMDACTL[17:0]

Bits
Reference
name

Description Qualified by

[17] DANSeq The data transfer is nonsequential from the last. This signal must be
asserted on the first cycle of each instruction, in addition to the second
transfer of a SWP or LDM PC, because the address of these transfers is not
one word greater than the previous transfer, and therefore the transfer must
have its address re-output.

During an unaligned access, this signal is only valid on the first transfer of
the access.

DASlot != 00

[16] DALast The data transfer is the last for this data instruction. This signal is asserted
for both halves of an unaligned access.

A related signal, DAFirst, can be implied from this signal, because the next
transfer must be the first transfer of the next data instruction.

DASlot != 00

[15] DACPRT The data transfer is a CPRT. DASlot != 00

[14] DASwizzle Words must be byte swizzled for ARM big-endian mode.

During an unaligned access, this signal is only valid on the first transfer of
the access.

DASlot != 00

[13:12] DARot Number of bytes to rotate right each word by.

During an unaligned access, these signals are only valid on the first transfer
of the access.

DASlot != 00

[11] DAUnaligned First transfer of an unaligned access.

The next transfer must be the second half, for which this signal is not
asserted.

DASlot != 00

[10:3] DABLSel Byte lane selects. DASlot != 00

[2] DAWrite Read or write.

During an unaligned access, this signal is only valid on the first transfer of
the access.

DASlot != 00

[1:0] DASlot Slot occupied by data item. b00 indicates that no slot is in use in this cycle.
This is kept at b00 when the ETM is powered down.

None
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 14-5
Unrestricted Access Non-Confidential

Trace Interface Port
14.1.3 Data value interface

The data values are sampled at the WBls stage. Here the load, store, MCR, and MRC
data is combined. The memory view of the data is presented, which must be converted
back to the register view depending on the alignment and endianness.

Data for a load or MRC is not returned for at least two cycles after the address. Data for
a store or MCR is not returned until at least one cycle after the address. Data values are
defined to correspond to the most recent data addresses with the same slot number,
starting from the previous cycle. In other words, data can correspond to an address from
the previous cycle, but not to an address from the same cycle.

Table 14-5 shows the data value interface signals.

Table 14-6 describes the bits of ETMDRCTL[3:0] signal.

The data values output corresponding to the following CP15 operations are
Unpredictable, and must not be relied on by software development tools:

• MCR p15, 0, <Rd>, c7, c10, 1 (Clean Data Cache Line using MVA)

• MCR p15, 0, <Rd>, c7, c10, 2 (Clean Data Cache Line using Index)

• MCR p15, 0, <Rd>, c7, c14, 1 (Clean and Invalidate Data Cache Line using MVA)

• MCR p15, 0, <Rd>, c7, c14, 2 (Clean and Invalidate Data Cache Line using Index)

Table 14-5 Data value interface signals

Signal name Description Qualified by

ETMDRCTL[3:0] Data value interface read control signals -

ETMDR[63:0] Contains the data for a load, MRC instruction DDSlot != 00

ETMDWCTL Data value interface write control signals -

ETMDW[63:0] Contains the written data -

Table 14-6 ETMDRCTL[3:0]

Bits Reference name Description Qualified by

[3] DDImpAbort Imprecise Data Aborts on this slot. Data is ignored. DDSlot != 00

[2] DDFail STREX data write failed. DDSlot != 00

[1:0] DDSlot Slot occupied by data item. b00 indicates that no slot is in use this cycle.
This is kept b00 when the ETM is powered down.

None
14-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Trace Interface Port
14.1.4 Pipeline advance interface

There are three points in the MPCore pipeline at which signals are produced for the
ETM. These signals must be realigned by the ETM, so pipeline advance signals are
provided.

The pipeline advance signals indicate when a new instruction enters pipeline stages
Ex3, Ex2, and ADD, see Typical pipeline operations on page 1-24.

Table 14-7 shows the ETMPADV[2:0] pipeline advance interface signals.

The pipeline advance signals present in other interfaces are:

IAValid Instruction entered WBEx.

DASlot != 00 Data transfer entered DC1.

DDSlot != 00, DDRWSlot != 0, or DDWSlot != 00

Data transfer entered WBls.

Table 14-7 ETMPADV[2:0]

Bits
Reference
name

Description Qualified by

[2] PAEx3a

a. This is kept LOW when the ETM is powered down.

Instruction entered Ex3 -

[1] PAEx2a Instruction entered Ex2 -

[0] PAAdda Instruction entered Ex1 and ADD -
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 14-7
Unrestricted Access Non-Confidential

Trace Interface Port
14.1.5 Coprocessor interface

The ETM coprocessor interface catches writes to the Context ID Register, CP15 c13
(see c13, Context ID Register on page 3-64). This enables the state of this register to be
shadowed even when the core interface is powered down. Rather than using the external
coprocessor interface, the core provides a dedicated, cut-down coprocessor interface
similar to that used by the debug logic.

Table 14-8 describes the coprocessor interface signals.

A complete transaction takes three cycles. The first and last cycles can overlap, giving
a sustained rate of one every two cycles.

Only the following instruction is presented by the coprocessor interface:

MCR p15, 0, <Rd>, c13, c0, 1 ; Write Context ID Register

Figure 14-1 shows the encoding of the ETMCPADDRESS[14:0] signals.

Figure 14-1 ETMCPADDRESS encoding

Table 14-8 Coprocessor interface signals

Signal name Direction Description Qualified by
Register
bound

ETMCPENABLE Output Interface enable. ETMCPWRITE
and ETMCPADDRESS are valid
this cycle, and the remaining signals
are valid two cycles later.

None Yes

ETMCPCOMMIT Output Commit. If this signal is LOW two
cycles after ETMCPENABLE is
asserted, the transfer is canceled and
must not take any effect.

ETMCPENABLE +2 Yes

ETMCPWRITE Output Read or write. Asserted for write. ETMCPENABLE Yes

ETMCPADDRESS[14:0] Output Register number. ETMCPENABLE Yes

ETMCPRDATA[31:0] Input Read data. ETMCPCOMMIT Yes

14 12 11 8 7 4 3 2 0

Opcode
1 CRn CRm C

P
Opcode
2

14-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Trace Interface Port
14.1.6 Other connections to the core

Table 14-9 shows the other signals that are connected to the core.

Table 14-9 Other connections

Signal name Direction Description

ETMPWRUP Input Indicates that the ETM is active. When LOW the trace interface must be clock
gated to conserve power.

ETMWFIPENDING Output Indicates to external ETM that the core requires to enter WFI.

nETMWFIREADY Input Handshake signal from external ETM to the core telling the core it can enter
WFI.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 14-9
Unrestricted Access Non-Confidential

Trace Interface Port
14-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 15
Cycle Timings and Interlock Behavior

This chapter describes the cycle timings and interlock behavior of integer instructions
on MP11 CPUs. It contains the following sections:

• About cycle timings and interlock behavior on page 15-3

• Register interlock examples on page 15-8

• Data processing instructions on page 15-9

• QADD, QDADD, QSUB, and QDSUB instructions on page 15-12

• ARMv6 media data processing on page 15-13

• ARMv6 Sum of Absolute Differences (SAD) on page 15-15

• Multiplies on page 15-16

• Branches on page 15-18

• Processor state updating instructions on page 15-19

• Single load and store instructions on page 15-20

• Load and store double instructions on page 15-23

• Load and store multiple instructions on page 15-25

• RFE and SRS instructions on page 15-28

• Synchronization instructions on page 15-29

• Coprocessor instructions on page 15-30

• SWI, BKPT, Undefined, and Prefetch Aborted instructions on page 15-31
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-1
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
• Thumb instructions on page 15-32.
15-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
15.1 About cycle timings and interlock behavior

Complex instruction dependencies and memory system interactions make it impossible
to describe briefly the exact cycle timing behavior for all instructions in all
circumstances. The timings described in this chapter are accurate in most cases. If
precise timings are required you must use a cycle-accurate model of the MP11 CPUs.

Unless stated otherwise cycle counts and result latencies described in this chapter are
best case numbers. They assume:

• no outstanding data dependencies between the current instruction and a previous
instruction

• the instruction does not encounter any resource conflicts

• all data accesses hit in the MicroTLB and data cache, and do not cross protection
region boundaries

• all instruction accesses hit in the instruction cache.

This section describes:

• Changes in instruction flow overview

• Instruction execution overview on page 15-5

• Conditional instructions on page 15-6

• Opposite condition code checks on page 15-7

• Definition of terms on page 15-4.

15.1.1 Changes in instruction flow overview

To minimize the number of cycles, because of changes in instruction flow, each MP11
CPU includes a:

• dynamic branch predictor

• static branch predictor

• return stack.

The dynamic branch predictor is a 128-entry direct-mapped branch predictor using VA
bits [9:3]. The prediction scheme uses a 2-bit saturating counter for predictions that are:

• Strongly Not Taken

• Weakly Not Taken

• Weakly Taken

• Strongly Taken.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-3
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
Only branches with a constant offset are predicted. Branches with a register-based offset
are not predicted. A dynamically predicted branch can be folded out of the instruction
stream if the following instruction arrives while the branch is within the prefetch
instruction buffer. A dynamically predicted branch takes one cycle or zero cycles if
folded out.

The static branch predictor operates on branches with a constant offset that are not
predicted by the dynamic branch predictor. Static predictions are issued from the Iss
stage of the main pipeline, consequently a statically predicted branch takes four cycles.

The return stack consists of three entries, and as with static predictions, issues a
prediction from the Iss stage of the main pipeline. The return stack mispredicts if the
value taken from the return stack is not the value that is returned by the instruction. Only
unconditional returns are predicted. A conditional return pops an entry from the return
stack but is not predicted. If the return stack is empty a return is not predicted. Items are
placed on the return stack from the following instructions:
• BL #<immed>

• BLX #<immed>

• BLX Rx

Items are popped from the return stack by the following types of instruction:
• BX lr

• MOV pc, lr

• LDR pc, [sp], #cns

• LDMIA sp!, {….,pc}

A correctly predicted return stack pop takes four cycles.

15.1.2 Definition of terms

Table 15-1 gives descriptions of cycle timing terms used in this chapter.

Table 15-1 Definition of cycle timing terms

Term Description

Cycles This is the minimum number of cycles required by an instruction.

Result latency This is the number of cycles before the result of this instruction is available for a following
instruction requiring the result at the start of the ALU, MAC2, and DC1 stage. This is the normal
case. Exceptions to this mark the register as an Early Reg.

Note
 The result latency is the number of cycles from the first cycle of an instruction.
15-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
15.1.3 Instruction execution overview

The instruction execution pipeline is constructed from three parallel 4-stage pipelines,
see Table 15-2. For a complete description of these pipeline stages see Pipeline stages
on page 1-22.

The ALU and multiply pipelines operate in a lock-step manner, causing all instructions
in these pipelines to retire in order. The load/store pipeline is a decoupled pipeline
enabling subsequent instructions in the ALU and multiply pipeline to complete
underneath outstanding loads.

Extensive forwarding to the Sh, MAC1, ADD, ALU, MAC2, and DC1 stages enables
many dependent instruction sequences to run without pipeline stalls. General
forwarding occurs from the ALU, Sat, WBex and WBls pipeline stages. In addition, the
multiplier contains an internal multiply accumulate forwarding path.

Most instructions do not require a register until the ALU stage. All result latencies are
given as the number of cycles until the register is required by a following instruction in
the ALU stage.

Register lock latency For STM and STRD instructions only. This is the number of cycles that a register is write locked for
by this instruction, preventing subsequent instructions that want to write the register from
starting. This lock is required to prevent a following instruction from writing to a register before
it has been read.

Early Reg The specified registers are required at the start of the Sh, MAC1, and ADD stage. Add one cycle
to the result latency of the instruction producing this register for interlock calculations.

Late Reg The specified registers are not required until the start of the ALU, MAC2, and DC1 stage for the
second execution. Subtract one cycle from the result latency of the instruction producing this
register for interlock calculations.

FlagsCycleDistance The number of cycles between an instruction that sets the flags and the conditional instruction.

Table 15-1 Definition of cycle timing terms (continued)

Term Description

Table 15-2 Pipeline stages

Pipeline Stages

ALU Sh ALU Sat WBex

Multiply MAC1 MAC2 MAC3

Load/Store ADD DC1 DC2 WBls
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-5
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
The following sequence takes four cycles:

LDR r1, [r2] ;Result latency three
ADD r3, r3, r1 ;Register r1 required by ALU

If a subsequent instruction requires the register at the start of the Sh, MAC1, or ADD
stage then an extra cycle must be added to the result latency of the instruction producing
the required register. Instructions that require a register at the start of these stages are
specified by describing that register as an Early Reg. The following sequence, requiring
an Early Reg, takes five cycles:

LDR r1, [r2] ;Result latency three plus one
ADD r3, r3, r1 LSL#6 ;plus one since Register r1 is required by Sh

Finally, some instructions do not require a register until their second execution cycle. If
a register is not required until the ALU, MAC1, or DC1 stage for the second execution
cycle, then a cycle can be subtracted from the result latency for the instruction
producing the required register. If a register is not required until this later point, it is
specified as a Late Reg. The following sequence where r1 is a Late Reg takes four
cycles:

LDR r1, [r2] ;Result latency three minus one
ADD r3, r1, r3, LSLr4 ;minus one since Register r1 is a Late Reg

;This ADD is a two issue cycle instruction

15.1.4 Conditional instructions

Most instructions execute in one or two cycles. If these instructions fail their condition
codes then they take one and two cycles respectively.

Multiplies, MSR, and some CP14 and CP15 coprocessor instructions are the only
instructions that require more than two cycles to execute. If one of these instructions
fails its condition codes, then it takes a variable number of cycles to execute. The
number of cycles is dependent on:

• the length of the operation

• the number of cycles between the setting of the flags and the start of the dependent
instruction.

The worst-case number of cycles for a condition code failing multicycle instruction is
five.

The following algorithm describes the number of cycles taken for multi-cycle
instructions which condition code fail:

Min(NonFailingCycleCount, Max(5 - FlagCycleDistance, 3))
15-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
Where:

Max (a,b) returns the maximum of the two values a,b.

Min (a,b) returns the minimum of the two values a,b.

NonFailingCycleCount

is the number of cycles that the failing instruction might have
taken had it passed.

FlagCycDistance is the number of cycles between the instruction that sets the flags
and the conditional instruction, including interlocking cycles. For
example:

• The following sequence has a FlagCycleDistance of 0
because the instructions are back-to-back with no
interlocks:
ADDS r1, r2, r3
MULEQ r4, r5, r6

• The following sequence has a FlagCycleDistance of one:
ADDS r1, r2, r3
MOV r0, r0
MULEQ r4, r5, r6

15.1.5 Opposite condition code checks

If instruction A and instruction B both write the same register the pipeline must ensure
that the register is written in the correct order. Therefore interlocks might be required to
correctly resolve this pipeline hazard.

The only useful sequences where two instructions write the same register without an
instruction reading its value in between are when the two instructions have opposite sets
of condition codes. The MP11 CPUs optimize these sequences to prevent unnecessary
interlocks. For example:

• The following sequences take two cycles to execute:
— ADDNE r1, r5, r6

LDREQ r1, [r8]

— LDREQ r1, [r8]
ADDNE r1, r5, r6

• The following sequence also takes two cycles to execute, because the STR
instruction does not store the value of r1 produced by the QDADDNE instruction:

QDADDNE r1, r5, r6
STREQ r1, [r8]
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-7
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
15.2 Register interlock examples

Table 15-3 shows register interlock examples using LDR and ADD instructions.

LDR instructions take one cycle, have a result latency of three, and require their base
register as an Early Reg.

ADD instructions take one cycle and have a result latency of one.

Table 15-3 Register interlock examples

Instruction
sequence

Behavior

LDR r1, [r2]
ADD r6, r5, r4

Takes two cycles because there are no register dependencies

ADD r1, r2, r3
ADD r9, r6, r1

Takes two cycles because ADD instructions have a result latency of one

LDR r1, [r2]
ADD r6, r5, r1

Takes four cycles because of the result latency of r1

ADD r2, r5, r6
LDR r1, [r2]

Takes three cycles because of the use of the result of r1 as an Early Reg

LDR r1, [r2]
LDR r5, [r1]

Takes five cycles because of the result latency and the use of the result of r1 as an Early Reg
15-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
15.3 Data processing instructions

This section describes the cycle timing behavior for the following instructions:

• AND

• EOR

• SUB

• RSB

• ADD

• ADC

• SBC

• RSC

• CMN

• ORR

• MOV

• BIC

• MVN

• TST

• TEQ

• CMP

• CMN.

15.3.1 Cycle counts if destination is not the PC

Table 15-4 shows the cycle timing behavior for data processing instructions if the
destination is not the PC. You can substitute ADD with any of the data processing
instructions identified in the opening paragraph of this section.

Table 15-4 Data Processing instruction cycle timing behavior if destination is not PC

Example instruction Cycles
Early
Reg

Late
Reg

Result
latency

Comment

ADD <Rd>, <Rn>, <Rm. 1 - - 1 Normal case.

ADD <Rd>, <Rn>, <Rm>, LSL #<immed> 1 <Rm> - 1 Requires a shifted source register.

ADD <Rd>, <Rn>, <Rm>, LSL <Rs> 2 <Rs> <Rn> 2 Requires a register controlled shifted
source register. Instruction takes two
issue cycles. In the first cycle the shift
distance Rs is sampled. In the second
cycle the actual shift of Rm and the ADD
instruction occurs.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-9
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
15.3.2 Cycle counts if destination is the PC

Table 15-5 shows the cycle timing behavior for data processing instructions if the
destination is the PC. You can substitute ADD with any data processing instruction except
for a MOV and CLZ. A CLZ with the PC as the destination is an Unpredictable instruction.

The timings for a MOV instruction are given separately in the Table 15-5.

For condition code failing cycle counts, the cycles for the non-PC destination variants
must be used.

Table 15-5 Data processing instruction cycle timing behavior if destination is the PC

Example instruction Cycles
Early
Reg

Late
Reg

Result
latency

Comment

MOV pc,lr 4 - - - Correctly predicted return
stack

MOV pc,lr 7 - - - Incorrectly predicted return
stack

MOV <cond> pc, lr 5-7a - - - Conditional return, or return
when return stack is empty

MOV pc, <Rd> 5 - - - MOV to PC, no shift required

MOV <cond> pc, <Rd> 5-7a - - - Conditional MOV to PC, no shift
required

MOV pc, <Rn>, <Rm>, LSL #<immed> 6 <Rm> - - Conditional MOV to PC, with a
shifted source register

MOV <cond> pc, <Rn>, <Rm>, LSL #<immed> 6-7a - - - Conditional MOV to PC, with a
shifted source register

MOV pc, <Rn>, <Rm>, LSL <Rs> 7 <Rs> <Rn> - MOV to PC, with a register
controlled shifted source
register

ADD pc, <Rd>, <Rm> 7 - - - Normal case to PC

ADD pc, <Rn>, <Rm>, LSL #<immed> 7 <Rm> - - Requires a shifted source
register

ADD pc, <Rn>, <Rm>, LSL <Rs> 8 <Rs> <Rn> - Requires a register controlled
shifted source register

a. If the instruction is conditional and passes conditional checks it takes MAX(MaxCycles - FlagCycleDistance, MinCycles),
If the instruction is unconditional it takes Min Cycles.
15-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
15.3.3 Example interlocks

Most data processing instructions are single-cycle and can be executed back-to-back
without interlock cycles, even if there are data dependencies between them. The
exceptions to this are when the shifter or register controlled shifts are used.

Shifter

The shifter is in a separate pipeline stage from the ALU. A register required by the
shifter is an Early Reg and requires an additional cycle of result availability before use.
For example, the following sequence introduces a one-cycle interlock, and takes three
cycles to execute:

ADD r1,r2,r3
ADD r4,r5,r1 LSL #1

The second source register, which is not shifted, does not incur an extra data
dependency check. Therefore, the following sequence takes two cycles to execute:

ADD r1,r2,r3
ADD r4,r1,r9 LSL #1

Register controlled shifts

Register controlled shifts take two cycles to execute:

• the register containing the shift distance is read in the first cycle

• the shift is performed in the second cycle

• The final operand is not required until the ALU stage for the second cycle.

Because a shift distance is required, the register containing the shift distance is an Early
Reg and incurs an extra interlock penalty. For example, the following sequence takes
four cycles to execute:

ADD r1, r2, r3
ADD r4, r2, r4, LSL r1
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-11
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
15.4 QADD, QDADD, QSUB, and QDSUB instructions

This section describes the cycle timing behavior for the following instructions:

• QADD

• QDADD

• QSUB

• QDSUB.

These instructions perform saturating arithmetic. Their result is produced during the Sat
stage, consequently they have a result latency of two. The QDADD and QDSUB instructions
must double and saturate the register Rn before the addition. This operation occurs in
the Sh stage of the pipeline, consequently this register is an Early Reg.

Table 15-6 shows the cycle timing behavior for QADD, QDADD, QSUB, and QDSUB instructions.

Table 15-6 QADD, QDADD, QSUB, and QDSUB instruction cycle timing behavior

Instructions Cycles Early Reg Result latency

QADD, QSUB 1 - 2

QDADD, QDSUB 1 <Rn> 2
15-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
15.5 ARMv6 media data processing

Table 15-7 shows ARMv6 media data processing instructions and gives their cycle
timing behavior.

All ARMv6 media data processing instructions are single-cycle issue instructions.
These instructions produce their results in either the ALU or Sat stage, and have result
latencies of one or two accordingly. Some of the instructions require an input register to
be shifted before use and therefore are marked as requiring an Early Reg.

Table 15-7 ARMv6 media data processing instructions cycle timing behavior

Instructions Cycles Early Reg Result latency

SADD16, SSUB16, SADD8, SSUB8 1 - 1

USAD8, USADA8 1 <Rm>,<Rs> 3

UADD16, USUB16, UADD8, USUB8 1 - 1

SEL 1 - 1

QADD16, QSUB16, QADD8, QSUB8 1 - 2

SHADD16, SHSUB16, SHADD8, SHSUB8 1 - 2

UQADD16, UQSUB16, UQADD8, UQSUB8 1 - 2

UHADD16, UHSUB16, UHADD8, UHSUB8 1 - 2

SSAT16, USAT16 1 - 2

SADDSUBX, SSUBADDX 1 <Rm> 1

UADDSUBX, USUBADDX 1 <Rm> 1

SADD8TO16, SADD8TO32, SADD16TO32 1 <Rm> 1

SUNPK8TO16, SUNPK8TO32, SUNPK16TO32 1 <Rm> 1

UUNPK8TO16, UUNPK8TO32, UUNPK16TO32 1 <Rm> 1

UADD8TO16, UADD8TO32, UADD16TO32 1 <Rm> 1

REV, REV16, REVSH 1 <Rm> 1

PKHBT, PKHTB 1 <Rm> 1

SSAT, USAT 1 <Rm> 2

QADDSUBX, QSUBADDX 1 <Rm> 2
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-13
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
SHADDSUBX, SHSUBADDX 1 <Rm> 2

UQADDSUBX, UQSUBADDX 1 <Rm> 2

UHADDSUBX, UHSUBADDX 1 <Rm> 2

Table 15-7 ARMv6 media data processing instructions cycle timing behavior

Instructions Cycles Early Reg Result latency
15-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
15.6 ARMv6 Sum of Absolute Differences (SAD)

Table 15-8 shows ARMv6 SAD instructions and gives their cycle timing behavior.

15.6.1 Example interlocks

Table 15-9 shows interlock examples using USAD8 and USADA8 instructions.

Table 15-8 ARMv6 sum of absolute differences instruction timing behavior

Instructions Cycles Early Reg Result latency

USAD8 1 <Rm>,<Rs> 3a

a. Result latency is one less if the destination is the
accumulate for a subsequent USADA8.

USADA8 1 <Rm>,<Rs> 3a

Table 15-9 Example interlocks

Instruction
sequence

Behavior

USAD8 r1,r2,r3
ADD r5,r6,r1

Takes four cycles because USAD8 has a result latency of three, and the ADD requires the result of the
USAD8 instruction.

USAD8 r1,r2,r3
MOV r9,r9
MOV r9,r9
ADD r5,r6,r1

Takes four cycles. The MOV instructions are scheduled during the result latency of the USAD8
instruction.

USAD8 r1,r2,r3
USADA8 r1,r4,r5,r1

Takes three cycles. The result latency is one less because the result is used as the accumulate for a
subsequent USADA8 instruction.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-15
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
15.7 Multiplies

The multiplier consists of a 3-cycle pipeline with early result forwarding not possible,
other than to the internal accumulate path. For a subsequent multiply accumulate the
result is available one cycle earlier than for all other uses of the result.

Certain multiplies require:

• more than one cycle to execute

• more than one pipeline issue to produce a result.

Multiplies with 64-bit results take and require two cycles to write the results,
consequently they have two result latencies with the low half of the result always
available first. The multiplicand and multiplier are required as Early Regs because they
are both required at the start of MAC1.

Table 15-10 shows the cycle timing behavior of example multiply instructions.

Table 15-10 Example multiply instruction cycle timing behavior

Example instruction Cycles Cycles if sets flags Early Reg Late Reg Result latency

MUL(S) 2 5 <Rm>, <Rs> - 4

MLA(S) 2 5 <Rm>, <Rs> <Rn> 4

SMULL(S) 3 6 <Rm>, <Rs> - 4/5

UMULL(S) 3 6 <Rm>, <Rs> - 4/5

SMLAL(S) 3 6 <Rm>, <Rs> <RdLo> 4/5

UMLAL(S) 3 6 <Rm>, <Rs> <RdLo> 4/5

SMULxy 1 - <Rm>, <Rs> - 3

SMLAxy 1 - <Rm>, <Rs> - 3

SMULWy 1 - <Rm>, <Rs> - 3

SMLAWy 1 - <Rm>, <Rs> - 3

SMLALxy 2 - <Rm>, <Rs> <RdHi> 3/4

SMUAD, SMUADX 1 - <Rm>, <Rs> - 3

SMLAD, SMLADX 1 - <Rm>, <Rs> - 3

SMUSD, SMUSDX 1 - <Rm>, <Rs> - 3

SMLSD, SMLSDX 1 - <Rm>, <Rs> - 3
15-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
Note
 Result latency is one less if the result is used as the accumulate register for a subsequent
multiply accumulate.

SMMUL, SMMULR 2 - <Rm>, <Rs> - 4

SMMLA, SMMLAR 2 - <Rm>, <Rs> <Rn> 4

SMMLS, SMMLSR 2 - <Rm>, <Rs> <Rn> 4

SMLALD, SMLALDX 2 - <Rm>, <Rs> <RdHi> 3/4

SMLSLD, SMLSLDX 2 - <Rm>, <Rs> <RdHi> 3/4

UMAAL 3 - <Rm>, <Rs> <RdLo> 4/5

Table 15-10 Example multiply instruction cycle timing behavior (continued)

Example instruction Cycles Cycles if sets flags Early Reg Late Reg Result latency
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-17
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
15.8 Branches

This section describes the cycle timing behavior for the B, BL, and BLX instructions.

Branches are subject to dynamic, static, and return stack predictions. Table 15-11 shows
example branch instructions and their cycle timing behavior.

Table 15-11 Branch instruction cycle timing behavior

Example instruction Cycles Comment

B <immed> 0 Folded dynamic prediction

B<immed>, BL<immed>, BLX<immed> 1 Not-folded dynamic prediction

B<immed>, BL<immed>, BLX<immed> 1 Correct not-taken static prediction

B<immed>, BL<immed>, BLX<immed> 4 Correct taken static prediction

B<immed>, BL<immed>, BLX<immed> 5-7a

a. Mispredicted branches, including taken unpredicted branches, take a varying number
of cycles to execute depending on their distance from a flag setting instruction. The
timing behavior is Cycle = MAX(MaxCycles - FlagCycleDistance, MinCycles).

Incorrect dynamic/static prediction

BX r14 4 Correct return stack prediction

BX r14 7 Incorrect return stack prediction

BX r14 5 Empty return stack

BX <cond> r14 5-7a Conditional return

BX <cond> <reg>, BLX <cond> <reg> 1 If not taken

BX <cond> <reg>, BLX <cond> <reg> 5-7a If taken
15-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
15.9 Processor state updating instructions

This section describes the cycle timing behavior for the MSR, MRS, CPS, and SETEND
instructions. Table 15-12 shows processor state updating instructions and their cycle
timing behavior.

Table 15-12 Processor state updating instructions cycle timing behavior

Instruction Cycles Comments

MRS 1 All MRS instructions

MSR CPSR_f 1 MSR to CPSR flags only

MSR 4 All other MSRs to the CPSR

MSR SPSR 5 All MSRs to the SPSR

CPS <effect> <iflags> 1 Interrupt masks only

CPS <effect> <iflags>, #<mode> 2 Mode changing

SETEND 1 -
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-19
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
15.10 Single load and store instructions

This section describes the cycle timing behavior for the following instructions:

• LDR

• LDRT

• LDRB

• LDRBT

• LDRSB

• LDRH

• LDRSH

• STR

• STRT

• STRB

• STRBT

• STRH

• PLD.

Table 15-13 on page 15-21 shows the cycle timing behavior for stores and loads, other
than loads to the PC.

You can replace LDR with any of the above single load or store instructions. The
following rules apply:

• They are single-cycle issue if a constant offset is used or if a register offset with
no shift, or shift by 2 is used. Both the base and any offset register are Early Regs.

• They are 2-cycle issue if either a negative register offset or a shift other than LSL
#2 is used. Only the offset register is an Early Reg.

• If ARMv6 unaligned support is enabled then accesses to addresses not aligned to
the access size generates two accesses to memory, and so consume the load/store
unit for an additional cycle. This extra cycle is required if the base or the offset is
not aligned to the access size, consequently the final address is potentially
unaligned, even if the final address turns out to be aligned.

• If ARMv6 unaligned support is enabled and the final access address is unaligned
there is an extra cycle of result latency.

• PLD (data preload hint instructions) have cycle timing behavior as for load
instructions. Because they have no destination register, the result latency is
not-applicable for such instructions.
15-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
• The updated base register has a result latency of one. For back-to-back load/store
instructions with base write back, the updated base is available to the following
load/store instruction with a result latency of 0.

Table 15-14 shows the cycle timing behavior for loads to the PC.

Only cycle times for aligned accesses are given because unaligned accesses to the PC
are not supported.

Table 15-13 Cycle timing behavior for stores and loads, other than loads to the PC

Example instruction Cycles
Memory
cycles

Result
latency

Comments

LDR <Rd>, <addr_md_1cycle>a 1 1 3 Legacy access / ARMv6 aligned access

LDR <Rd>, <addr_md_2cycle>a 2 2 4 Legacy access / ARMv6 aligned access

LDR <Rd>, <addr_md_1cycle>a 1 2 3 Potentially ARMv6 unaligned access

LDR <Rd>, <addr_md_2cycle>a 2 3 4 Potentially ARMv6 unaligned access

LDR <Rd>, <addr_md_1cycle>a 1 2 4 ARMv6 unaligned access

LDR <Rd>, <addr_md_2cycle>a 1 2 4 ARMv6 unaligned access

a. See Table 15-15 on page 15-22 for an explanation of <addr_md_1cycle> and <addr_md_2cycle>.

Table 15-14 Cycle timing behavior for loads to the PC

Example instruction Cycles
Memory
cycles

Result
latency

Comments

LDR pc, [sp, #cns] (!) 4 1 - Correctly return stack predicted

LDR pc, [sp], #cns 4 1 - Correctly return stack predicted

LDR pc, [sp, #cns] (!) 9 1 - Return stack mispredicted

LDR pc, [sp], #cns 9 1 - Return stack mispredicted

LDR <cond> pc, [sp, #cns] (!) 8 1 - Conditional return, or empty return stack

LDR <cond> pc, [sp], #cns 8 1 - Conditional return, or empty return stack

LDR pc, <addr_md_1cycle>a 8 1 - -

LDR pc, <addr_md_2cycle>a 9 2 - -

a. See Table 15-15 on page 15-22 for an explanation of <addr_md_1cycle> and <addr_md_2cycle>.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-21
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
The MP11 CPUs include a 3-entry return stack that can predict procedure returns. Any
load to the PC with an immediate offset, and the stack pointer r13 as the base register is
considered a procedure return.

For condition code failing cycle counts, you must use the cycles for the non-PC
destination variants.

Table 15-15 shows the explanation of <addr_md_1cycle> and <addr_md_2cycle> used in
Table 15-13 on page 15-21 and Table 15-14 on page 15-21.

15.10.1 Base register update

The base register update for load or store instructions occurs in the ALU pipeline. To
prevent an interlock for back-to-back load or store instructions reusing the same base
register, there is a local forwarding path to recycle the updated base register around the
ADD stage.

For example, the following instruction sequence take three cycles to execute:

LDR r5, [r2, #4]!
LDR r6, [r2, #0x10]!
LDR r7, [r2, #0x20]!

Table 15-15 <addr_md_1cycle> and <addr_md_2cycle> LDR example instruction

Example instruction Early Reg Comment

<addr_md_1cycle>

LDR <Rd>, [<Rn>, #cns] (!) <Rn> If an immediate offset, or a positive register offset with
no shift or shift LSL #2, then one-issue cycle.

LDR <Rd>, [<Rn>, <Rm>] (!) <Rn>, <Rm>

LDR <Rd>, [<Rn>, <Rm>, LSL #2] (!) <Rn>, <Rm>

LDR <Rd>, [<Rn>], #cns <Rn>

LDR <Rd>, [<Rn>], <Rm> <Rn>, <Rm>

LDR <Rd>, [<Rn>], <Rm>, LSL #2 <Rn>, <Rm>

<addr_md_2cycle>

LDR <Rd>, [<Rn>, -<Rm>] (!) <Rm> If negative register offset, or shift other than LSL #2 then
two-issue cycles.

LDR <Rd>, [Rm, -<Rm> <shf> <cns>] (!) <Rm>

LDR <Rd>, [<Rn>], -<Rm> <Rm>

LDR <Rd>, [<Rn>], -<Rm> <shf> <cns> <Rm>
15-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
15.11 Load and store double instructions

This section describes the cycle timing behavior for the LDRD and STRD instructions

The LDRD and STRD instructions:

• Are 2-cycle issue if either a negative register offset or a shift other than LSL #2 is
used. Only the offset register is an Early Reg.

• Are single-cycle issue if either a constant offset is used or if a register offset with
no shift, or shift by 2 is used. Both the base and any offset register are Early Regs.

• Take only one memory cycle if the address is doubleword aligned.

• Take two memory cycles if the address is not doubleword aligned.

The updated base register has a result latency of one. For back-to-back load/store
instructions with base write back, the updated base is available to the following
load/store instruction with a result latency of 0.

To prevent instructions after a STRD from writing to a register before it has stored that
register, the STRD registers have a lock latency that determines how many cycles it is
before a subsequent instruction which writes to that register can start.

Table 15-16 shows the cycle timing behavior for LDRD and STRD instructions.

Table 15-17 on page 15-24 shows the explanation of <addr_md_1cycle> and
<addr_md_2cycle> used in Table 15-16.

Table 15-16 Load and store double instructions cycle timing behavior

Example instruction Cycles Memory cycles
Result latency
(LDRD)

Register lock latency
(STRD)

Address is double-word aligned

LDRD r1, <addr_md_1cycle>a 1 1 3/3 1,2

LDRD r1, <addr_md_2cycle>a 2 2 4/4 2,3

Address not double-word aligned

LDRD r1, <addr_md_1cycle>a 1 2 3/4 1,2

LDRD r1, <addr_md_2cycle>a 2 3 4/5 2,3

a. See Table 15-17 on page 15-24 for an explanation of <addr_md_1cycle> and <addr_md_2cycle>.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-23
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
Table 15-17 <addr_md_1cycle> and <addr_md_2cycle> LDRD example instruction

Example instruction Early Reg Comment

<addr_md_1cycle>

LDRD <Rd>, [<Rn>, #cns] (!) <Rn> If an immediate offset, or a positive register offset with
no shift or shift LSL #2, then one-issue cycle.

LDRD <Rd>, [<Rn>, <Rm>] (!) <Rn>, <Rm>

LDRD <Rd>, [<Rn>, <Rm>, LSL #2] (!) <Rn>, <Rm>

LDRD <Rd>, [<Rn>], #cns <Rn>

LDRD <Rd>, [<Rn>], <Rm> <Rn>, <Rm>

LDRD <Rd>, [<Rn>], <Rm>, LSL #2 <Rn>, <Rm>

<addr_md_2cycle>

LDRD <Rd>, [<Rn>, -<Rm>] (!) <Rm> If negative register offset, or shift other than LSL #2 then
two-issue cycles.

LDRD Rd, [<Rm>, -<Rm> <shf> <cns>] (!) <Rm>

LDRD <Rd>, [<Rn>], -<Rm> <Rm>

LDRD< Rd>, [Rn], -<Rm> <shf> <cns> <Rm>
15-24 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
15.12 Load and store multiple instructions

This section describes the cycle timing behavior for the LDM and STM instructions.

These instructions take one cycle to issue but then use multiple memory cycles to load
or store all the registers. Because the memory datapath is 64-bits wide, two registers can
be loaded or stored on each cycle. Following non-dependent, non-memory instructions
can execute in the integer pipeline while these instructions complete. A dependent
instruction is one that either:

• writes a register that has not yet been stored

• reads a register that has not yet been loaded.

Before a load or store multiple can begin all the registers in the register list must be
available. For example, a STM cannot begin until all outstanding loads for registers in the
register list have completed.

To prevent instructions after a store multiple from writing to a register before a store
multiple has stored that register, the register list has a lock latency that determines how
many cycles it is before a subsequent instruction which writes to that register can start.

15.12.1 Load and store multiples, other than load multiples including the PC

In all cases the base register, Rx, is an Early Reg.

Table 15-18 shows the cycle timing behavior of load and store multiples including the
PC.

Table 15-18 Load and store multiples, other than load multiples including the PC

Example instruction Cycles
Memory
cycles

Result latency
(LDM)

Register lock latency
(STM)

First address 64-bit aligned

LDMIA Rx,{r1} 1 1 3 1

LDMIA Rx,{r1,r2} 1 1 3,3 1,2

LDMIA Rx,{r1,r2,r3} 1 2 3,3,4 1,2,2

LDMIA Rx,{r1,r2,r3,r4} 1 2 3,3,4,4 1,2,2,3

LDMIA Rx,{r1,r2,r3,r4,r5} 1 3 3,3,4,4,5 1,2,2,3,3

LDMIA Rx,{r1,r2,r3,r4,r5,r6} 1 3 3,3,4,4,5,5 1,2,2,3,3,4

LDMIA Rx,{r1,r2,r3,r4,r5,r6,r7} 1 4 3,3,4,4,5,5,6 1,2,2,3,3,4,4
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-25
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
15.12.2 Load multiples, where the PC is in the register list

If a LDM loads the PC then the PC access is performed first to accelerate the branch,
followed by the rest of the register loads. The cycle timings and all register load
latencies for LDMs with the PC in the list are one greater than the cycle times for the
same LDM without the PC in the list.

The MP11 CPUs include a 3-entry return stack which can predict procedure returns.
Any LDM to the PC with the stack pointer (r13) as the base register, and which does not
restore the SPSR to the CPSR, is predicted as a procedure return.

For condition code failing cycle counts, the cycles for the non-PC destination variants
must be used. These are all single-cycle issue, consequently a condition code failing
LDM to the PC takes one cycle.

In all cases the base register, Rx, is an Early Reg, and requires an extra cycle of result
latency to provide its value.

First address not 64-bit aligned

LDMIA Rx,{r1} 1 1 3 1

LDMIA Rx,{r1,r2} 1 2 3,4 1,2

LDMIA Rx,{r1,r2,r3} 1 2 3,4,4 1,2,2

LDMIA Rx,{r1,r2,r3,r4} 1 3 3,4,4,5 1,2,2,3

LDMIA Rx,{r1,r2,r3,r4,r5} 1 3 3,4,4,5,5 1,2,2,3,4

LDMIA Rx,{r1,r2,r3,r4,r5,r6} 1 4 3,4,4,5,5,6 1,2,2,3,4,4

LDMIA Rx,{r1,r2,r3,r4,r5,r6,r7} 1 4 3,4,4,5,5,6,6 1,2,2,3,4,4,5

Table 15-18 Load and store multiples, other than load multiples including the PC (continued)

Example instruction Cycles
Memory
cycles

Result latency
(LDM)

Register lock latency
(STM)
15-26 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
Table 15-19 shows the cycle timing behavior of load multiples, where the PC is in the
register list.

15.12.3 Example interlocks

The following sequence that has an LDM instruction take five cycles, because r3 has a
result latency of four cycles:

LDMIA r0, {r1-r7}
ADD r10, r10, r3

The following that has an STM instruction takes five cycles to execute, because r6 has a
register lock latency of four cycles:

STMIA r0, {r1-r7}
ADD r6, r10, r11

Table 15-19 Cycle timing behavior of load multiples, where the PC is in the register list

Example instruction Cycles
Memory
Cycles

Result
Latency

Comments

LDMIA sp!,{...,pc} 4 1+na 4,… Correctly return stack predicted

LDMIA sp!,{...,pc} 9 1+na 4,… Return stack mispredicted

LDMIA <cond> sp!,{...,pc} 9 1+na 4,… Conditional return, or empty return stack

LDMIA rx,{...,pc} 8 1+na 4,… Not return stack predicted

a. Where n is the number of memory cycles for this instruction if the PC had not been in the register list.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-27
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
15.13 RFE and SRS instructions

This section describes the cycle timing for the RFE and SRS instructions.

These instructions return from an exception and save exception return state respectively.
The RFE instruction always requires two memory cycles. It first loads the SPSR value
from the stack, and then the return address. The SRS instruction takes one or two memory
cycles depending on double-word alignment of the first address location.

In all cases the base register is an Early Reg, and requires an extra cycle of result latency
to provide its value.

Table 15-20 shows the cycle timing behavior for RFE and SRS instructions.

Table 15-20 RFE and SRS instructions cycle timing behavior

Example instruction Cycles Memory Cycles

Address double-word aligned

RFEIA <Rn> 9 2

SRSIA #<mode> 1 1

Address not double-word aligned

RFEIA <Rn> 9 2

SRSIA #<mode> 1 2
15-28 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
15.14 Synchronization instructions

This section describes the cycle timing behavior for the following instructions:

• SWP

• SWPB

• LDREX

• STREX.

In all cases the base register, Rn, is an Early Reg, and requires an extra cycle of result
latency to provide its value. Table 15-21 shows the synchronization instructions cycle
timing behavior.

Table 15-21 Synchronization instructions cycle timing behavior

Instruction Cycles Memory cycles Result latency

SWP Rd, <Rm>, [Rn] 2 2 3

SWPB Rd, <Rm>, [Rn] 2 2 3

LDREX <Rd>, [Rn] 1 1 3

STREX, Rd>, <Rm>, [Rn] 1 1 3
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-29
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
15.15 Coprocessor instructions

This section describes the cycle timing behavior for the following instructions:

• CDP

• LDC

• STC

• LDCL

• STCL

• MCR

• MRC

• MCRR

• MRRC.

The precise timing of coprocessor instructions is tightly linked with the behavior of the
relevant coprocessor. The numbers in Table 15-22 are best case numbers. For LDC or STC
instructions the coprocessor can determine how many words are required. Table 15-22
shows the coprocessor instructions cycle timing behavior.

Table 15-22 Coprocessor instructions cycle timing behavior

Instruction Cycles Memory cycles Result latency

MCR 1 1 -

MCRR 1 1 -

MRC 1 1 3

MRRC 1 1 3/3

LDC or LDCL 1 As required -

STC or STCL 1 As required -

CDP 1 1 -
15-30 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Cycle Timings and Interlock Behavior
15.16 SWI, BKPT, Undefined, and Prefetch Aborted instructions

This section describes the cycle timing behavior for SWI, BKPT, Undefined, and
Prefetch Abort instructions.

In all cases the exception is taken in the WBex stage of the pipeline. SWI and most
Undefined instructions that fail their condition codes take one cycle. A small number of
Undefined instructions that fail their condition codes take two cycles. Table 15-23
shows the SWI, BKPT, Undefined, Prefetch Aborted instructions cycle timing behavior.

Table 15-23 SWI, BKPT, Undefined, Prefetch Aborted instructions cycle timing
behavior

Instruction Cycles

SWI 8

BKPT 8

Prefetch Abort 8

Undefined 8
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 15-31
Unrestricted Access Non-Confidential

Cycle Timings and Interlock Behavior
15.17 Thumb instructions

The cycle timing behavior for Thumb instructions follow the ARM equivalent
instruction cycle timing behavior.

Thumb BL instructions that are encoded as two Thumb instructions, can be dynamically
predicted. The predictions occurs on the second part of the BL pair, consequently a
correct prediction takes two cycles.
15-32 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 16
Introduction to VFP

This chapter introduces the VFP11 coprocessor. It contains the following sections:

• About the VFP11 coprocessor on page 16-2

• Applications on page 16-3

• Coprocessor interface on page 16-4

• VFP11 coprocessor pipelines on page 16-5

• Modes of operation on page 16-12

• Short vector instructions on page 16-15

• Parallel execution of instructions on page 16-16

• VFP11 treatment of branch instructions on page 16-17

• Writing optimal VFP11 code on page 16-18

• VFP11 revision information on page 16-19.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 16-1
Unrestricted Access Non-Confidential

Introduction to VFP
16.1 About the VFP11 coprocessor

The VFP11 coprocessor is an implementation of the ARM Vector Floating-point
Architecture (VFPv2). It provides low-cost floating-point computation that is fully
compliant with the ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point
Arithmetic, referred to in this document as the IEEE 754 standard. The VFP11
coprocessor supports all VFP addressing modes described for vector operations in the
ARM Architecture Reference Manual.

The VFP11 coprocessor is optimized for:

• high data transfer bandwidth through 64-bit split load and store buses

• fast hardware execution of a high percentage of operations on normalized data,
resulting in higher overall performance while providing full IEEE 754 standard
support when required

• hardware divide and square root operations in parallel with other arithmetic
operations to reduce the impact of long-latency operations

• near IEEE 754 standard compatibility in RunFast mode without support code
assistance, providing determinable run-time calculations for all input data

• low power consumption, small die size, and reduced kernel code.

The VFP11 coprocessor is an ARM enhanced numeric coprocessor that provides IEEE
754 standard-compatible operations. Designed for the ARM11 family of cores, the
VFP11 coprocessor fully supports single-precision and double-precision add, subtract,
multiply, divide, multiply and accumulate, and square root operations. Conversions
between floating-point data formats and ARM integer word format are provided, with
special operations to perform the conversion in round-towards-zero mode for high-level
language support.

The VFP11 coprocessor provides a performance-power-area solution for embedded
applications and high performance for general-purpose applications.

Note
 This manual describes only VFP11-specific implementation issues. See also the Vector
Floating-point Architecture section of the ARM Architecture Reference Manual.
16-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction to VFP
16.2 Applications

The VFP11 coprocessor provides floating-point computation suitable for a wide
spectrum of applications such as:

• personal digital assistants and smartphones for graphics, voice compression and
decompression, user interfaces, Java interpretation, and Just In Time (JIT)
compilation

• games machines for three-dimensional graphics and digital audio

• printers and MultiFunction Peripheral (MFP) controllers for high-definition color
rendering

• set-top boxes for digital audio and digital video, and three-dimensional user
interfaces

• automotive applications for engine management and power train computations.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 16-3
Unrestricted Access Non-Confidential

Introduction to VFP
16.3 Coprocessor interface

The VFP11 coprocessor is integrated with an ARM11 processor through a dedicated
VFP coprocessor interface.

The VFP11 coprocessor uses coprocessor ID number 10 for single-precision
instructions and coprocessor ID number 11 for double-precision instructions. In some
cases, such as mixed-precision instructions, the coprocessor ID represents the
destination precision. In a system containing a VFP11 coprocessor, these coprocessor
ID numbers must not be used by another coprocessor.

Access to the VFP11 coprocessor is controlled by the ARM11 Coprocessor Access
Control Register. The coprocessor access rights must be configured correctly before any
VFP11 instructions can be executed.
16-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction to VFP
16.4 VFP11 coprocessor pipelines

The VFP11 coprocessor has three separate instruction pipelines:

• the Multiply and Accumulate (FMAC) pipeline

• the Divide and Square root (DS) pipeline

• the Load/Store (LS) pipeline.

Each pipeline can operate independently of the other pipelines and in parallel with
them. Each of the three pipelines shares the first two pipeline stages, Decode and Issue.
These two stages and the first cycle of the Execute stage of each pipeline remain in
lockstep with the ARM11 pipeline stage but effectively one cycle behind the ARM11
pipeline. When the ARM11 processor is in the Issue stage for a particular VFP
instruction, the VFP11 coprocessor is in the Decode stage for the same instruction. This
lockstep mechanism maintains in-order issue of instructions between the ARM11
processor and the VFP11 coprocessor.

The three pipelines can operate in parallel, enabling more than one instruction to be
completed per cycle. Instructions issued to the FMAC pipeline can complete out of
order with respect to operations in the LS and DS pipelines. This out-of-order
completion might be visible to the user when a short vector FMAC or DS operation
generates an exception, and an LS operation begins before the exception is detected.
The destination registers or memory of the LS operation reflect the completion of a
transfer. The destination registers of the exceptional FMAC or DS operation retain the
values they had before the operation started. This is described in more detail in Parallel
execution on page 19-23.

Except for divide and square root operations, the pipelines support single-cycle
throughput for all single-precision operations and most double-precision operations.
Double-precision multiply and multiply and accumulate operations have a two-cycle
throughput. The LS pipeline is capable of supplying two single-precision operands or
one double-precision operand per cycle, balancing the data transfer capability with the
operand requirements.

16.4.1 FMAC pipeline

Figure 16-1 on page 16-6 shows the structure of the FMAC pipeline.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 16-5
Unrestricted Access Non-Confidential

Introduction to VFP
Figure 16-1 FMAC pipeline

FMAC pipeline instructions

The FMAC pipeline executes the following instructions:

FADD Add.

FSUB Subtract.

FMUL Multiply.

FNMUL Negated multiply.

FMAC short writeback path

Normalize

Multiply

A

operand

inversion

Align

low

Final

sum

E2 E3 E7

Product

sum

FMAC full writeback path

Align

high

E4

LZA

E5 E6

Product

round

Write-

back

Special

results

Result

select

Round

E1Issue

To

register file

OPC

OPB

OPA

Decode

Exception

detect

Zero

detect

Exception

detect

Zero

detect

Exception

detect

Zero

detect

Read

port Fm

Read

port Fd

Read

port Fn

Read

port Fm

Read

port Fn

Load

forward

DS

forward
16-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction to VFP
FMAC Multiply and accumulate.

FNMAC Negated multiply and accumulate.

FMSC Multiply and subtract.

FNMSC Negated multiply and subtract.

FABS Absolute value.

FNEG Negation.

FUITO Convert unsigned integer to float.

FTOUI Convert float to unsigned integer.

FSITO Convert signed integer to float.

FTOSI Convert float to signed integer.

FTOUIZ Convert float to unsigned integer with forced round-towards-zero mode.

FTOSIZ Convert float to signed integer with forced round-towards-zero mode.

FCMP Compare.

FCMPE Compare (NaN exceptions).

FCMPZ Compare with zero.

FCMPEZ Compare with zero (NaN exceptions).

FCVTSD Convert from double-precision to single-precision.

FCVTDS Convert from single-precision to double-precision.

FCPY Copy register.

See Execution timing on page 19-25 for cycle counts.

The FMAC family of instructions (FMAC, FNMAC, FMSC, and FNMSC) perform a
chained multiply and accumulate operation. The product is computed, rounded
according to the specified rounding mode and destination precision, and checked for
exceptions before the accumulate operation is performed. The accumulate operation is
also rounded according to the specified rounding mode and destination precision and
checked for exceptions. The final result is identical to the equivalent sequence of
operations executed in sequence. Exception processing and status reporting also reflect
the independence of the components of the chained operations.

As an example, the FMAC instruction performs a chained multiply and add operation
with the following sequence of operations:

1. The product of the operands in the Fn and Fm registers is computed.

2. The product is rounded according to the current rounding mode and destination
precision and checked for exceptions.

3. The result is summed with the operand in the Fd register.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 16-7
Unrestricted Access Non-Confidential

Introduction to VFP
4. The sum is rounded according to the current rounding mode and destination
precision and checked for exceptions. If no exception conditions that require
support code are present, the result is written to the Fd register.

For example, the following two operations return the same result:

FMACS S0, S1, S2
FMULS TEMP, S1, S2
FADDS S0, S0, TEMP

16.4.2 DS pipeline

Figure 16-2 shows the structure of the DS pipeline.

Figure 16-2 DS pipeline

Read

port Fn

Next root

multiples

Increment

Divisor/root multiple

Final

result

select

Read

port Fm

Load

forward

FMAC

forward

Zero detect

Divisor/

radicand

Dividend

Next

quotient/

root

selection

Normalize

Sign

Partial

remainder/radicand

Execute 2 Execute 3Execute 1Issue Execute 4

To

register

file

Special results

Write-

back
16-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction to VFP
DS pipeline instructions

The DS pipeline executes the following instructions:

FDIV Divide.

FSQRT Square root.

The VFP11 coprocessor executes divide and square root instructions for both
single-precision and double-precision operands with all IEEE 754 standard rounding
modes supported. The DS unit uses a shared radix-4 algorithm that provides a good
balance between speed and chip area. DS operations have a latency of 19 cycles for
single-precision operations and 33 cycles for double-precision operations. The
throughput is 15 cycles for single-precision operations and 29 cycles for
double-precision operations.

16.4.3 LS pipeline

The LS pipeline handles all of the instructions that involve data transfer to and from the
ARM11 processor, including loads, stores, moves to coprocessor system registers, and
moves from coprocessor system registers. It remains synchronized with the ARM11 LS
pipeline for the duration of the instruction.

Data written to the ARM11 processor is read from the VFP11 coprocessor register file
in the Issue stage and transferred to the ARM11 processor in the next cycle and is
latched on the ARM11 data cache1/data cache 2 cycle boundary. The transfer is made
on a dedicated 64-bit store data bus between the VFP11 coprocessor and the ARM11
processor.

Load data is written to the VFP11 coprocessor on a dedicated 64-bit load bus between
the ARM11 processor and all coprocessors. Data is received by the VFP11 coprocessor
in the Writeback stage. Data is written to the register file in the Writeback stage, and
available for forwarding to data processing operations in the same cycle. Figure 16-3 on
page 16-10 shows the structure of the LS pipeline.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 16-9
Unrestricted Access Non-Confidential

Introduction to VFP
Figure 16-3 LS pipeline

LS pipeline instructions

The LS pipeline executes the following instructions:

FLD Load a single-precision, double-precision, or 32-bit integer value from
memory to the VFP11 register file.

FLDM Load up to 32 single-precision or integer values or 16 double-precision
values from memory to the VFP11 register file.

FST Store a single-precision, double-precision, or 32-bit integer value from
the VFP11 register file to memory.

FSTM Store up to 32 single-precision or integer values or 16 double-precision
values from the VFP11 register file to memory.

FMSR Move a single-precision or integer value from an ARM11 register to a
VFP11 single-precision register.

ExecuteDecodeFetch

AVFPINSTR

(instruction

bus)

Fd

Fm

Fn

Store

Load

Read

port Fd

Read

port Fn

Store

data

bus

Register

file: read

and

format

muxes

Read

port Fm

FMAC writeback

Memory 2 Writeback

Register

file: write

and

format

muxes

DS forward

Load forward

Load data bus

FMAC forward

DS writeback

Register

address

generation

Memory 1Issue
16-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction to VFP
FMRS Move a single-precision or integer value from a VFP11 single-precision
register to an ARM11 register.

FMDHR Move an ARM11 register value to the upper half of a VFP11
double-precision register.

FMDLR Move an ARM11 register value to the lower half of a VFP11
double-precision register.

FMRDH Move the upper half of a double-precision value from a VFP11
double-precision register to an ARM11 register.

FMRDL Move the lower half of a double-precision value from a VFP11
double-precision register to an ARM11 register.

FMDRR Move two ARM11 register values to a VFP11 double-precision register.

FMRRD Move a double-precision VFP11 register value to two ARM11 registers.

FMSRR Move two ARM11 register values to two consecutively-numbered
VFP11 single-precision registers.

FMRRS Move two consecutively-numbered VFP11 single-precision register
values to two ARM11 registers.

FMXR Move an ARM11 register value to a VFP11 control register.

FMRX Move a VFP11 control register value to an ARM11 register.

FMSTAT Move N, C, Z, and V flags from the VFP11 FPSCR to the ARM11 CPSR.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 16-11
Unrestricted Access Non-Confidential

Introduction to VFP
16.5 Modes of operation

The VFP11 coprocessor provides full IEEE 754 standard compatibility through a
combination of hardware and software. There are rare cases that require significant
additional compute time to resolve correctly according to the requirements of the IEEE
754 standard. For instance, the VFP11 coprocessor does not process subnormal input
values directly. To provide correct handling of subnormal inputs according to the IEEE
754 standard, a trap is made to support code to process the operation. Using the support
code for processing this operation can require hundreds of cycles. In some applications
this is unavoidable, because compliance with the IEEE 754 standard is essential to
proper operation of the program. In many other applications, strict compliance to the
IEEE 754 standard is unnecessary, while determinable runtime, low interrupt latency,
and low power are of more importance. To accommodate a variety of applications, the
VFP11 coprocessor provides four modes of operation:

• Full-compliance mode

• Flush-to-zero mode on page 16-13

• Default NaN mode on page 16-13

• RunFast mode on page 16-13.

16.5.1 Full-compliance mode

When the VFP11 coprocessor is in full-compliance mode, all operations that cannot be
processed according to the IEEE 754 standard use support code for assistance. The
operations requiring support code are:

• Any CDP operation involving a subnormal input when not in flush-to-zero mode.
Enable flush-to-zero mode by setting the FZ bit, FPSCR[24].

• Any CDP operation involving a NaN input when not in default NaN mode. Enable
default NaN mode by setting the DN bit, FPSCR[25].

• Any CDP operation that has the potential of generating an underflow condition
when not in flush-to-zero mode.

• Any CDP operation when Inexact exceptions are enabled. Enable Inexact
exceptions by setting the IXE bit, FPSCR[12].

• Any CDP operation that can cause an overflow while Overflow exceptions are
enabled. Enable Overflow exceptions by setting the OFE bit, FPSCR[10].

• Any CDP operation that involves an invalid arithmetic operation or an arithmetic
operation on a signaling NaN when Invalid Operation exceptions are enabled.
Enable Invalid Operation exceptions by setting the IOE bit, FPSCR[8].
16-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction to VFP
• A float-to-integer conversion that has the potential to create an integer that cannot
be represented in the destination integer format when Invalid Operation
exceptions are enabled.

The support code:

• determines the nature of the exception

• determines if processing is required to perform the computation

• calls a function to compute the result and status

• transfers control to the user trap handler if the enable bit is set for a detected
exception

• writes the result to the destination register, updates the FPSCR register, and
returns to the user code if no enabled exception is detected

• passes control to the user trap handler and supplies any specified intermediate
result for the exception if an enabled exception is detected.

Arithmetic exceptions on page 20-25 describes the conditions under which the VFP11
coprocessor traps to support code.

16.5.2 Flush-to-zero mode

Setting the FZ bit, FPSCR[24], enables flush-to-zero mode and increases performance
on very small inputs and results. In flush-to-zero mode, the VFP11 coprocessor treats
all subnormal input operands of arithmetic CDP operations as positive zeros in the
operation. Exceptions that result from a zero operand are signaled appropriately. FABS,
FNEG, and FCPY are not considered arithmetic CDP operations and are not affected by
flush-to-zero mode. A result that is tiny, as described in the IEEE 754 standard, for the
destination precision is smaller in magnitude than the minimum normal value before
rounding and is replaced with a positive zero. The IDC flag, FPSCR[7], indicates when
an input flush occurs. The UFC flag, FPSCR[3], indicates when a result flush occurs.

16.5.3 Default NaN mode

Setting the DN bit, FPSCR[25], enables default NaN mode. In default NaN mode, the
result of any operation that involves an input NaN or generated a NaN result returns the
default NaN. Propagation of the fraction bits is maintained only by FABS, FNEG, and
FCPY operations, all other CDP operations ignore any information in the fraction bits
of an input NaN. See NaN handling on page 18-5 for a description of default NaNs.

16.5.4 RunFast mode

RunFast mode is the combination of the following conditions:

• the VFP11 coprocessor is in flush-to-zero mode

• the VFP11 coprocessor is in default NaN mode
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 16-13
Unrestricted Access Non-Confidential

Introduction to VFP
• all exception enable bits are cleared.

In RunFast mode the VFP11 coprocessor:

• processes subnormal input operands as positive zeros

• processes results that are tiny before rounding, that is, between the positive and
negative minimum normal values for the destination precision, as positive zeros

• processes input NaNs as default NaNs

• returns the default result specified by the IEEE 754 standard for overflow,
division by zero, invalid operation, or inexact operation conditions fully in
hardware and without additional latency

• processes all operations in hardware without trapping to support code.

RunFast mode enables the programmer to write code for the VFP11 coprocessor that
runs in a determinable time without support code assistance, regardless of the
characteristics of the input data. In RunFast mode, no user exception traps are available.
However, the exception flags in the FPSCR register are compliant with the IEEE 754
standard for Inexact, Overflow, Invalid Operation, and Division by Zero exceptions.
The underflow flag is modified for flush-to-zero mode. Each of these flags is set by an
exceptional condition and can by cleared only by a write to the FPSCR register.
16-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction to VFP
16.6 Short vector instructions

The VFPv2 architecture supports execution of short vector instructions of up to eight
operations on single-precision data and up to four operations on double-precision data.
Short vectors are most useful in graphics and signal-processing applications. They
reduce code size, increase speed of execution by supporting parallel operations and
multiple transfers, and simplify algorithms with high data throughput.

Short vector operations issue the individual operations specified in the instruction in a
serial fashion. To eliminate data hazards, short vector operations begin execution only
after all source registers are available, and all destination registers are not targets of
other operations.

See Chapter 19 VFP Instruction Execution for more information on execution of short
vector instructions.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 16-15
Unrestricted Access Non-Confidential

Introduction to VFP
16.7 Parallel execution of instructions

The VFP11 coprocessor provides the ability to execute several floating-point operations
in parallel, while the ARM11 processor is executing ARM instructions. While a short
vector operation executes for a number of cycles in the VFP11 coprocessor, it appears
to the ARM11 processor as a single-cycle instruction and is retired in the ARM11
processor before it completes execution in the VFP11 coprocessor.

The three pipelines are designed to operate independently of one another when initial
processing is completed. This makes it possible to issue a short vector operation and a
load or store multiple operation in the next cycle and have both executing at the same
time, provided no data hazards exist between the two instructions. With this mechanism,
algorithms that can be double-buffered can be written to hide much of the time to
transfer data to and from the VFP11 coprocessor under the arithmetic operations,
resulting in a significant improvement in performance.

The separate DS pipeline enables both data transfer operations and CDPs that are not to
the DS pipeline to execute in parallel with the divide. The DS block has a dedicated
write port to the register file, and no special care is required when executing operations
in parallel with divide or square root instructions. This is described in Parallel execution
on page 19-23.
16-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction to VFP
16.8 VFP11 treatment of branch instructions

The VFP11 coprocessor does not directly provide branch instructions. Instead, the
result of a floating-point compare instruction can be stored in the ARM11 condition
code flags using the FMSTAT instruction. This enables the ARM11 branch instructions
and conditional execution capabilities to be used for executing conditional
floating-point code.

In some cases, full IEEE 754 standard comparisons are not required. Simple
comparisons of single-precision data, such as comparisons to zero or to a constant, can
be done using an FMRS transfer and the ARM11 CMP and CMN instructions. This
method is faster in many cases than using an FCMP instruction followed by an FMSTAT
instruction. For more information, see Compliance with the IEEE 754 standard on
page 18-3 and Comparisons on page 18-6.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 16-17
Unrestricted Access Non-Confidential

Introduction to VFP
16.9 Writing optimal VFP11 code

The following guidelines provide significant performance increases for VFP11 code:

• Unless there is a read-after-write hazard, program most scalar operations to
immediately follow each other. Instead of a VFP11 FMAC instruction, use either
a single ARM11 instruction or a VFP11 load or store instruction after the
following instructions:

— a scalar double-precision multiply

— a multiply and accumulate

— a short vector instruction of length greater than one iteration.

• Avoid short vector divides and square roots. The VFP11 FMAC and DS pipelines
are unavailable until the final iteration of the short vector DS operation issues
from the Execute 1 stage. If the short vector DS operation can be separated, other
VFP11 instructions can be issued in the cycles immediately following the divide
or square root. See Parallel execution on page 19-23.

• The best performance for data-intensive applications requires double-buffering
looped short vector instructions. The register banks can be divided to provide
multiple independent working areas. To take advantage of the simultaneous
execution of data transfer and short vector arithmetic instructions, follow the
arithmetic instructions on one bank with load or store instructions on the other
bank.

• Moves to and from control registers are serializing. Avoid placing these in loops
or time-critical code.

• If fully compliant IEEE 754 standard comparisons are not required, avoid using
FCMPE and FCMPEZ. Using an FMRS instruction with an ARM11 CMP or
CMN can be faster for simple comparisons. See Comparisons on page 18-6.
16-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Introduction to VFP
16.10 VFP11 revision information

This manual describes the fourth version of the VFP11 coprocessor.

Updates in the fourth version of the VFP11 coprocessor are:

• corrections for errata

• addition of Media and VFP Feature Registers (MVFRs)

• update to the FPSID register to reflect the fourth version.

There are no other functional differences between the VFP11 third and fourth versions.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 16-19
Unrestricted Access Non-Confidential

Introduction to VFP
16-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 17
VFP Register File

This chapter describes implementation-specific features of the VFP11 coprocessor that
are useful to programmers. It contains the following sections:

• About the register file on page 17-2

• Register file internal formats on page 17-3

• Decoding the register file on page 17-5

• Loading operands from MPCore registers on page 17-6

• Maintaining consistency in register precision on page 17-8

• Data transfer between memory and VFP11 registers on page 17-9

• Access to register banks in CDP operations on page 17-11.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 17-1
Unrestricted Access Non-Confidential

VFP Register File
17.1 About the register file

The register file is organized in four banks of eight registers. Each 32-bit register can
store either a single-precision floating-point number or an integer.

Any consecutive pair of registers, [Reven+1]:[Reven], can store a double-precision
floating-point number. Because a load and store operation does not modify the data, the
VFP11 registers can also be used as secondary data storage by another application that
does not use floating-point values.

The register file can be configured as four circular buffers for use by short vector
instructions in applications requiring high data throughput, such as filtering and
graphics transforms. For short vector instructions, register addressing is circular within
each bank. Because load and store operations do not circulate, you can load or store
multiple banks, up to the entire register file, with a single instruction. Short vector
operations obey certain rules specifying the conditions under which the registers in the
argument list specify circular buffers or single-scalar registers. The LEN and STRIDE
fields in the FPSCR register specify the number of operations performed by short vector
instructions and the increment scheme within the circular register banks. More
information and examples are in the ARM Architecture Reference Manual.
17-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Register File
17.2 Register file internal formats

The VFPv2 architecture provides the option of an internal data format that is different
from some or all of the external formats. In this implementation of the VFP11
coprocessor, data in the register file has the same format as data in memory. Load or
store operations for single-precision, double-precision, or integer data do not modify the
format as a consequence of the transfer. However, to ensure compatibility with future
VFP implementations, use FLDMX/FSTMX instructions when saving context and
restoring VFP11 registers. See the ARM Architecture Reference Manual for more
information.

It is the responsibility of the programmer to be aware of the data type in each register.
The hardware does not perform any checking of the agreement between the data type in
the source registers and the data type expected by the instruction. Hardware always
interprets the data according to the precision implied in the instruction.

Accessing a register that has not been initialized or loaded with valid data is
Unpredictable. A way to detect access to an uninitialized register is to load all registers
with Signaling NaNs (SNaNs) in the precision of the initial access of the register and
enable the Invalid Operation exception.

17.2.1 Integer data format

The VFP11 coprocessor supports signed and unsigned 32-bit integers. Signed integers
are treated as two’s complement values. No modification to the data is implicit in a load,
store, or transfer operation on integer data. The format of integer data within the register
file is identical to the format in memory or in an MPCore general-purpose register.

17.2.2 Single-precision data format

Figure 17-1 shows the single-precision bit fields.

Figure 17-1 Single-precision data format

The single-precision data format contains:

• the sign bit, bit [31]

• the exponent, bits [30:23]

• the fraction, bits [22:0].

31

FractionS Exponent

22 030 23
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 17-3
Unrestricted Access Non-Confidential

VFP Register File
The IEEE 754 standard defines the single-precision data format of the VFP11
coprocessor. See the IEEE 754 standard for details about exponent bias, special formats,
and numerical ranges.

17.2.3 Double-precision data format

Double-precision format has a Most Significant Word (MSW) and a Least Significant
Word (LSW). Figure 17-2 shows the double-precision bit fields.

Figure 17-2 Double-precision data format

The MSW contains:

• the sign bit, bit [31]

• the exponent, bits [30:20]

• the upper 20 bits of the fraction, bits [19:0].

The LSW contains the lower 32 bits of the fraction.

The IEEE 754 standard defines the double-precision data format used in the VFP11
coprocessor. See the IEEE 754 standard for details about exponent bias, special formats,
and numerical ranges.

31

Exponent Fraction, upper 20 bitsS

30 20 19 0

Fraction, lower 32 bits

Double-precision

MSW

Double-precision

LSW
17-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Register File
17.3 Decoding the register file

Each register file access uses the five bits of the register number in the instruction word.
For single-precision and integer accesses, the most significant four bits are in the Fm,
Fn, or Fd field, and the least significant bit is the M, N, or D bit for each instruction
format. For instructions with double-precision operands or destinations, the M, N, and
D bit corresponding to a double-precision access must be zero. Figure 17-3 shows the
register file. See the ARM Architecture Reference Manual for instruction formats and
the positions of these bits.

Figure 17-3 Register file access

31 0

S1

S3

S7

S5

S9

S11

S13

S15

S17

S19

S21

S23

S25

S27

S29

S31

031

63 0

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

S2

S4

S6

S8

S10

S12

S14

S16

S18

S20

S22

S24

S26

S28

S30

S0
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 17-5
Unrestricted Access Non-Confidential

VFP Register File
17.4 Loading operands from MPCore registers

Floating-point data can be transferred between MPCore registers and VFP11 registers
using the MCR, MRC, MCRR, and MRRC coprocessor data transfer instructions. No exceptions
are possible on these transfer instructions.

MCR instructions transfer 32-bit values from MPCore registers to VFP11 registers as
Table 17-1 shows.

MRC instructions transfer 32-bit values from VFP11 registers to MPCore registers as
Table 17-2 shows.

Table 17-1 VFP11 MCR instructions

Instruction Operation Description

FMXR VFP11 system register = Rd Move from MPCore register Rd to VFP11 system register FPSIDa,
FPSCR, FPEXC, FPINST, or FPINST2.

FMDLR Dn[31:0] = Rd Move from MPCore register Rd to lower half of VFP11 double-precision
register Dn.

FMDHR Dn[63:32] = Rd Move from MPCore register Rd to upper half of VFP11 double-precision
register Dn.

FMSR Sn = Rd Move from MPCore register Rd to VFP11 single-precision or integer
register Sn.

a. Writing to the FPSID register does not change the contents of the FPSID but can be used as a serializing instruction.

Table 17-2 VFP11 MRC instructions

Instruction Operation Description

FMRX Rd = VFP11 system
register

Move from VFP11 system register FPSID, FPSCR, FPEXC, FPINST, or
FPINST2 to MPCore register Rd.

FMRDL Rd = Dn[31:0] Move from lower half of VFP11 double-precision register Dn to MPCore register
Rd.

FMRDH Rd = Dn[63:32] Move from upper half of VFP11 double-precision register Dn to MPCore register
Rd.

FMRS Rd = Sn Move from VFP11 single-precision or integer register Sn to MPCore register Rd.
17-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Register File
MCRR instructions transfer 64-bit quantities from MPCore registers to VFP11 registers as
Table 17-3 shows.

MRRC instructions transfer 64-bit quantities from VFP11 registers to MPCore registers as
Table 17-4 shows.

Table 17-3 VFP11 MCRR instructions

Instruction Operation Description

FMDRR Dm[31:0] = Rd
Dm[63:32] = Rn

Move from MPCore registers Rd and Rn to lower and upper halves of VFP11
double-precision register Dm.

FMSRR Sm = Rd
S(m + 1) = Rn

Move from MPCore registers Rd and Rn to consecutive VFP11 single-precision
registers Sm and S(m + 1).

Table 17-4 VFP11 MRRC instructions

Instruction Operation Description

FMRRD Rd = Dm[31:0]
Rn = Dm[63:32]

Move from lower and upper halves of VFP11 double-precision register Dm to
MPCore registers Rd and Rn.

FMRRS Rd = Sm
Rn = S(m + 1)

Move from single-precision VFP11 registers Sm and S(m + 1) to MPCore registers
Rd and Rn.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 17-7
Unrestricted Access Non-Confidential

VFP Register File
17.5 Maintaining consistency in register precision

The VFP11 register file stores single-precision, double-precision, and integer data in the
same registers. For example, D6 occupies the same registers as S12 and S13. The usable
format of the register or registers depends on the last load or arithmetic instruction that
wrote to the register or registers.

The VFP11 hardware does not check the register format to see if it is consistent with the
precision of the current operation. Inconsistent use of the registers is possible but
Unpredictable. The hardware interprets the data in the format required by the instruction
regardless of the latest store or write operation to the register. It is the task of the
compiler or programmer to maintain consistency in register usage.
17-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Register File
17.6 Data transfer between memory and VFP11 registers

The B bit in the CP15 c1 Control Register, see the ARM Architecture Reference Manual,
determines whether access to stored memory is little-endian or big-endian. The MPCore
processor supports both little-endian and big-endian access formats in memory.

The MPCore processor stores 32-bit words in memory with the Least Significant Byte
(LSB) in the lowest byte of the memory address regardless of the endianness selected.
For a store of a single-precision floating-point value, the LSB is located at the target
address with the lower two bits of the address cleared. The Most Significant Byte (MSB)
is at the target address with the lower two bits set. For best performance, all
single-precision data must be aligned in memory to four-byte boundaries, and
double-precision data must be aligned to eight-byte boundaries.

Table 17-5 shows how single-precision data is stored in memory and the address to
access each byte in both little-endian and big-endian formats. In this example, the target
address is 0x40000000.

Table 17-5 Single-precision data memory images and byte addresses

Single-precision
data bytes

Address in
memory

Little-endian
byte address

Big-endian
byte address

MSB, bits [31:24] 0x40000003 0x40000003 0x40000000

Bits [23:16] 0x40000002 0x40000002 0x40000001

Bits [15:8] 0x40000001 0x40000001 0x40000002

LSB, bits [7:0] 0x40000000 0x40000000 0x40000003
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 17-9
Unrestricted Access Non-Confidential

VFP Register File
For double-precision data, the location of the two words that comprise the data are
stored in different locations for little-endian and big-endian data access formats.
Table 17-6 shows the data storage in memory and the address to access each byte in
little-endian and big-endian access modes. In this example, the target address is
0x40000000.

The memory image for the data is identical for both little-endian and big-endian within
data words. The MPCore hardware performs the address transformations to provide
both little-endian and big-endian addressing to the programmer.

Table 17-6 Double-precision data memory images and byte addresses

Double-
precision
data bytes

Little-endian
address in
memory

Little-endian
byte address

Big-endian
address in
memory

Big-endian
byte address

MSB, bits [63:56] 0x40000007 0x40000007 0x40000003 0x40000000

Bits [55:48] 0x40000006 0x40000006 0x40000002 0x40000001

Bits [47:40] 0x40000005 0x40000005 0x40000001 0x40000002

Bits [39:32] 0x40000004 0x40000004 0x40000000 0x40000003

Bits [31:24] 0x40000003 0x40000003 0x40000007 0x40000004

Bits [23:16] 0x40000002 0x40000002 0x40000006 0x40000005

Bits [15:8] 0x40000001 0x40000001 0x40000005 0x40000006

LSB, bits [7:0] 0x40000000 0x40000000 0x40000004 0x40000007
17-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Register File
17.7 Access to register banks in CDP operations

The register file is especially suited for short vector operations. The four register banks
function as four circular hardware queues. Short vector operations significantly improve
the performance of operations with high data throughput such as signal processing and
matrix manipulation functions.

17.7.1 About register banks

As Figure 17-4 shows, the register file is divided into four banks with eight registers in
each bank for single-precision instructions and four registers per bank for
double-precision instructions. CDP instructions access the banks in a circular manner.
Load and store multiple instructions do not access the registers in a circular manner but
treat the register file as a linearly ordered structure.

See ARM Architecture Reference Manual for more information on VFP addressing
modes.

Figure 17-4 Register banks

A short vector CDP operation that has a source or destination vector crossing a bank
boundary wraps around and accesses the first register in the bank.

Example 17-1 on page 17-12 shows the iterations of the following short vector add
instruction:

FADDS S11, S22, S31

In this instruction, the LEN field contains b101, selecting a vector length of six
iterations, and the STRIDE field contains b00, selecting a vector stride of one.

S24

S25

S26

S27

S28

S29

S30

S31

Bank 3

D12

D13

D14

D15

S17

S18

S19

S20

S21

S22

S16

Bank 2

D8

D9

D10

D11
S23

S8

S9

S10

S11

S12

S13

S14

S15

Bank 1

D4

D5

D6

D7

S3

S2

S4

S5

S6

S7

S0

S1

Bank 0

D0

D1

D2

D3
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 17-11
Unrestricted Access Non-Confidential

VFP Register File
Example 17-1 Register bank wrapping

FADDS S11, S22, S31; 1st iteration
FADDS S12, S23, S24 ; 2nd iteration. The 2nd source vector wraps around

; and accesses the 1st register in the 4th bank
FADDS S13, S16, S25; 3rd iteration. The 1st source vector wraps around

; and accesses the 1st register in the 3rd bank
FADDS S14, S17, S26 ; 4th iteration
FADDS S15, S18, S27 ; 5th iteration
FADDS S8, S19, S28 ; 6th and last iteration. The destination vector

; wraps around and writes to the 1st register in the
; 2nd bank

17.7.2 Operations using register banks

The register file organization supports four types of operations described in the
following sections:

• Scalar-only instructions

• Short vector-only instructions on page 17-13

• Short vector instructions with scalar source on page 17-13

• Scalar instructions in short vector mode on page 17-14.

See Chapter 18 VFP Programmers Model for details of the LEN and STRIDE fields and
the FPSCR register.

Scalar-only instructions

An instruction is a scalar-only operation if the operands are treated as scalars and the
result is a scalar.

Clearing the LEN field in the FPSCR register selects a vector length of one iteration.
For example, if the LEN field contains b000, then the following operation writes the
sum of the single-precision values in S21 and S22 to S12:

FADDS S12, S21, S22

Some instructions can operate only on scalar data regardless of the value in the LEN
field. These instructions are:

Compare operations

FCMPS/D, FCMPZS/D, FCMPES/D, and FCMPEZS/D.
17-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Register File
Integer conversions

FTOUIS/D, FTOUIZS/D, FTOSIS/D, FTOSIZS/D, FUITOS/D, and
FSITOS/D.

Precision conversions

FCVTDS and FCVTSD.

Short vector-only instructions

Vector-only instructions require that the value in the LEN field is nonzero, and that the
destination and Fm registers are not in bank 0.

Example 17-2 shows the iterations of the following short vector instruction:

FMACS S16, S0, S8

In the example, the LEN field contains b011, selecting a vector length of four iterations,
and the STRIDE field contains b00, selecting a vector stride of one.

Example 17-2 Short vector instruction

FMACS S16, S0, S8; 1st iteration
FMACS S17, S1, S9; 2nd iteration
FMACS S18, S2, S10; 3rd iteration
FMACS S19, S3, S11; 4th and last iteration

Short vector instructions with scalar source

The VFPv2 architecture enables a vector to be operated on by a scalar operand. The
destination must be a vector, that is, not in bank 0, and the Fm operand must be in
bank 0.

Example 17-3 shows the iterations of the following short vector instruction with a scalar
source:

FMULD D12, D8, D2

In the example, the LEN field contains b001, selecting a vector length of two iterations,
and the STRIDE field contains b00, selecting a vector stride of one.

Example 17-3 Short vector instruction with scalar source

FMULD D12, D8, D2; 1st iteration
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 17-13
Unrestricted Access Non-Confidential

VFP Register File
FMULD D13, D9, D2; 2nd and last iteration

This scales the two source registers, D8 and D9, by the value in D2 and writes the new
values to D12 and D13.

Scalar instructions in short vector mode

You can mix scalar and short vector operations by carefully selecting the source and
destination registers. If the destination is in bank 0, the operation is scalar-only
regardless of the value in the LEN field. You do not have to change the LEN field from
a nonzero value to b000 to perform scalar operations.

Example 17-4 shows the sequence of operations for the following instructions:

FABSD D4, D8
FADDS S0, S0, S31
FMULS S24, S26, S1

In the example, the LEN field contains b001, selecting a vector length of two iterations,
and the STRIDE field contains b00, selecting a vector stride of one.

Example 17-4 Scalar operation in short vector mode

FABSD D4, D8 ; vector DP ABS operation on regs (D8, D9) to (D4, D5)
FABSD D5, D9
FADDS S0, S0, S31 ; scalar increment of S0 by S31
FMULS S24, S26, S1 ; vector (S26, S27) scaled by S1 and written to (S24, S25)
FMULS S25, S27, S1

The tables that follow show the four types of operations possible in the VFPv2
architecture. In the tables, Any refers to the availability of all registers in the precision
for the specified operand. S refers to a scalar operand with only a single register. V refers
to a vector operand with multiple registers. Table 17-7 describes single-precision
three-operand register usage.

Table 17-7 Single-precision three-operand register usage

LEN field Fd Fn Fm Operation type

b000 Any Any Any S = S op S OR S = S ± S × S
17-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Register File
Table 17-8 describes single-precision two-operand register usage.

Table 17-9 describes double-precision three-operand register usage.

Nonzero 0-7 Any Any S = S op S OR S = S ± S × S

Nonzero 8-31 Any 0-7 V = V op S OR V = V ± V × S

Nonzero 8-31 Any 8-31 V = V op V OR V = V ± V × V

Table 17-8 Single-precision two-operand register usage

LEN field Fd Fm Operation type

b000 Any Any S = op S

Nonzero 0-7 Any S = op S

Nonzero 8-31 0-7 V = op S

Nonzero 8-31 8-31 V = op V

Table 17-9 Double-precision three-operand register usage

LEN field Fd Fn Fm Operation type

b000 Any Any Any S = S op S OR S = S ± S × S

Nonzero 0-3 Any Any S = S op S OR S = S ± S × S

Nonzero 4-15 Any 0-3 V = V op S OR V = V ± V × S

Nonzero 4-15 Any 4-15 V = V op V OR V = V ± V × V

Table 17-7 Single-precision three-operand register usage (continued)

LEN field Fd Fn Fm Operation type
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 17-15
Unrestricted Access Non-Confidential

VFP Register File
Table 17-10 describes double-precision two-operand register usage.

Table 17-10 Double-precision two-operand register usage

LEN field Fd Fm Operation type

b000 Any Any S = op S

Nonzero 0-3 Any S = op S

Nonzero 4-15 0-3 V = op S

Nonzero 4-15 4-15 V = op V
17-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 18
VFP Programmers Model

This chapter describes implementation-specific features of the VFP11 coprocessor that
are useful to programmers. It contains the following sections:

• About the programmers model on page 18-2

• Compliance with the IEEE 754 standard on page 18-3

• ARMv5TE coprocessor extensions on page 18-10

• VFP11 system registers on page 18-16.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 18-1
Unrestricted Access Non-Confidential

VFP Programmers Model
18.1 About the programmers model

This section introduces the VFP11 implementation of the VFPv2 floating-point
architecture.

Note
 The ARM Architecture Reference Manual describes the VFPv1 architecture.

The VFP11 coprocessor implements all the instructions and modes of the VFPv2
architecture. The VFPv2 architecture adds the following features and enhancements to
the VFPv1 architecture:

• The ARM v5TE instruction set. This includes the MRRC and MCRR instructions to
transfer 64-bit data between the MPCore processor and the VFP11 coprocessor.
These instructions enable the transfer of a double-precision register or two
consecutively numbered single-precision registers to or from a pair of MPCore
registers. See Loading operands from MPCore registers on page 17-6 for syntax
and usage of VFP MRRC and MCRR instructions.

• Default NaN mode. In default NaN mode, any operation involving one or more
NaN operands produces the default NaN as a result, rather than returning the NaN
or one of the NaNs involved in the operation. This mode is compatible with the
IEEE 754 standard but not with current handling of NaNs by industry.

• Addition of the input subnormal flag, IDC (FPSCR[7]). IDC is set whenever the
VFP11 coprocessor is in flush-to-zero mode and a subnormal input operand is
replaced by a positive zero. It remains set until cleared by writing to the FPSCR
register. A new Input Subnormal exception enable bit, IDE (FPSCR[15]), is also
added. When IDE is set, the VFP11 coprocessor traps to the Undefined trap
handler for an instruction that has a subnormal input operand.

• New functionality of the underflow flag, UFC (FPSCR[3]), in flush-to-zero
mode. In flush-to-zero mode, UFC is set whenever a result is below the threshold
for normal numbers before rounding, and the result is flushed to zero. UFC
remains set until cleared by writing to the FPSCR register. Setting the Underflow
exception enable bit, UFE (FPSCR[11]), does not cause a trap in flush-to-zero
mode.

• New functionality of the inexact flag, IXC (FPSCR[4]), in flush-to-zero mode. In
VFPv1, IXC is set when an input or result is flushed to zero. In VFPv2
architecture, the IDC and UFC flags provide this information. See Inexact
exception on page 20-23 for more information.

• Addition of RunFast mode. See RunFast mode on page 16-13 for details of
RunFast mode operation.
18-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Programmers Model
18.2 Compliance with the IEEE 754 standard

This section introduces issues related to compliance with the IEEE 754 standard:

• hardware and software components

• software-based components and their availability.

See the ARM Architecture Reference Manual for information about VFP architecture
compliance with the IEEE 754 standard.

18.2.1 An IEEE 754 standard-compliant implementation

The VFP11 hardware and support code together provide VFPv2 floating-point
instruction implementations that are compliant with the IEEE 754 standard. Unless an
enabled floating-point exception occurs, it appears to the program that the
floating-point instruction was executed by the hardware. If an exceptional condition
occurs that requires software support during instruction execution, the instruction takes
significantly more cycles than normal to produce the result. This is a common practice
in the industry, and the incidence of such instructions is typically very low.

18.2.2 Complete implementation of the IEEE 754 standard

The following operations from the IEEE 754 standard are not supplied by the VFP11
instruction set:

• remainder

• round floating-point number to integer-valued floating-point number

• binary-to-decimal conversions

• decimal-to-binary conversions

• direct comparison of single-precision and double-precision values.

For complete implementation of the IEEE 754 standard, the VFP11 coprocessor and
support code must be augmented with library functions that implement these
operations. See Application Note 98, VFP Support Code for details of support code and
the available library functions.

18.2.3 IEEE 754 standard implementation choices

The ARM Architecture Reference Manual describes some of the implementation
choices permitted by the IEEE 754 standard and used in the VFPv2 architecture.

Additional implementation choices are made within the VFP11 coprocessor about the
cases that are handled by the VFP11 hardware and the cases that bounce to the support
code.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 18-3
Unrestricted Access Non-Confidential

VFP Programmers Model
To execute frequently encountered operations as fast as possible and minimize silicon
area, handling of rarely occurring values and some exceptions is relegated to the support
code. The VFP11 coprocessor supports two modes for handling rarely occurring values:

Full-compliance mode

Full-compliance mode with support code assistance is fully compliant
with the IEEE 754 standard. Full-compliance mode requires the
floating-point support code to handle certain operands and exceptional
conditions not supported in the hardware. Although the support code
gives full compliance with the IEEE 754 standard, it does increase the
runtime of an application and the size of kernel code.

RunFast mode

In RunFast mode, default handling of subnormal inputs, underflows, and
NaN inputs is not fully compliant with the IEEE 754 standard. No user
trap handlers are permitted in RunFast mode.

When flush-to-zero and default NaN modes are enabled, and all
exceptions are disabled, the VFP11 coprocessor operates in RunFast
mode. While the potential loss of accuracy for very small values is
present, RunFast mode removes a significant number of
performance-limiting stall conditions. By not requiring the floating-point
support code, RunFast mode enables increased performance of typical
and optimized code and a reduction in the size of kernel code. See
Hazards on page 19-7 for more information on performance
improvements in RunFast mode.

Supported formats

The supported formats are:

• Single-precision and double-precision. No extended format is supported.

• Integer formats:

— unsigned 32-bit integers

— two’s complement signed 32-bit integers.
18-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Programmers Model
NaN handling

Any single-precision or double-precision values with the maximum exponent field
value and a nonzero fraction field are valid NaNs. A most significant fraction bit of zero
indicates a Signaling NaN (SNaN). A one indicates a Quiet NaN (QNaN). Two NaN
values are treated as different NaNs if they differ in any bit. Table 18-1 shows the default
NaN values in both single and double precision.

Any SNaN passed as input to an operation causes an Invalid Operation exception and
sets the IOC flag, FPSCR[0]. If the IOE bit, FPSCR[8], is set, control passes to a user
trap handler if present. If IOE is not set, a default QNaN is written to the destination
register. The rules for cases involving multiple NaN operands are in the ARM
Architecture Reference Manual.

Processing of input NaNs for ARM floating-point coprocessors and libraries is defined
as follows:

• In full-compliance mode, NaNs are handled according to the ARM Architecture
Reference Manual. The hardware does not process the NaNs directly for
arithmetic CDP instructions, but traps to the support code for all NaN processing.
For data transfer operations, NaNs are transferred without raising the Invalid
Operation exception or trapping to support code. For the nonarithmetic CDP
instructions, FABS, FNEG, and FCPY, NaNs are copied, with a change of sign if
specified in the instructions, without causing the Invalid Operation exception or
trapping to support code.

• In default NaN mode, NaNs are handled completely within the hardware without
support code assistance. SNaNs in an arithmetic CDP operation set the IOC flag,
FPSCR[0]. NaN handling by data transfer and nonarithmetic CDP instructions is
the same as in full-compliance mode. Arithmetic CDP instructions involving NaN
operands return the default NaN regardless of the fractions of any NaN operands.

Table 18-1 Default NaN values

Single-precision Double-precision

Sign 0 0

Exponent 0xFF 0x7FF

Fraction bit [22] = 1
bits [21:0] are all zeros

bit [51] = 1
bits [50:0] are all zeros
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 18-5
Unrestricted Access Non-Confidential

VFP Programmers Model
Table 18-2 summarizes the effects of NaN operands on instruction execution.

Comparisons

Comparison results modify condition code flags in the FPSCR register. The FMSTAT
instruction transfers the current condition code flags in the FPSCR register to the
MPCore CPSR register. See the ARM Architecture Reference Manual for mapping of
IEEE 754 standard predicates to ARM conditions. The condition code flags used are
chosen so that subsequent conditional execution of ARM instructions can test the
predicates defined in the IEEE 754 standard.

Table 18-2 QNaN and SNaN handling

Instruction
type

Default
NaN
mode With QNaN operand With SNaN operand

Arithmetic CDP

Off INVa set. Bounce to support code to
process operation.

INV set. Bounce to support code to process
operation.

On No bounce. Default NaN returns. IOCb set. If IOEc set, bounce to Invalid
Operation user trap handler. If IOE clear,
default NaN returns.

Nonarithmetic
CDP

Off
NaN passes to destination with sign changed as appropriate.

On

FCMP(Z)

Off INV set. Bounce to support code to process
operation.

INV set. Bounce to support code to process
operation.

On No bounce. Unordered compare. IOC set. If IOE set, bounce to Invalid
Operation user trap handler. If IOE clear,
unordered compare.

FCMPE(Z)

Off INV set. Bounce to support code to process
operation.

INV set. Bounce to support code to process
operation.

On IOC set. If IOE set, bounce to Invalid
Operation user trap handler. If IOE clear,
unordered compare.

IOC set. If IOE set, bounce to Invalid
Operation user trap handler. If IOE clear,
unordered compare.

Load/store
Off

All NaNs transferred. No bounce.
On

a. INV is the Input exception flag, FPEXC[7].
b. IOC is the Invalid Operation exception flag, FPSCR[0].
c. IOE is the Invalid Operation exception enable bit, FPSCR[8].
18-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Programmers Model
The VFP11 coprocessor handles most comparisons of numeric values in hardware,
generating the appropriate condition code depending on whether the result is less than,
equal to, or greater than. When the VFP11 coprocessor is not in flush-to-zero mode,
comparisons involving subnormal operands bounce to support code.

The VFP11 coprocessor supports:

Compare operations

The compare operations are FCMPS, FCMPZS, FCMPD, and FCMPZD.

In default NaN mode, a compare instruction involving a QNaN produces
an unordered result. An SNaN produces an unordered result and
generates an Invalid Operation exception. If the IOE bit, FPSCR[8], is
set, the Invalid Operation user trap handler is called. When the VFP11
coprocessor is not in default NaN mode, comparisons involving NaNs
bounce to support code.

Compare with exception operations

The compare with exception operations are FCMPES, FCMPEZS,
FCMPED, and FCMPEZD.

In default NaN mode, a compare with exception operation involving
either an SNaN or a QNaN produces an unordered result and generates
an Invalid Operation exception. When the VFP11 coprocessor is not in
default NaN mode, comparisons involving NaNs bounce to support code.

Some simple comparisons on single-precision data can be computed directly by the
MPCore processor. If only equality or comparison to zero is required, and NaNs are not
an issue, performing the comparison in MPCore registers using CMP or CMN instructions
can be faster.

If branching on the state of the Z flag is required, you can use the following instructions
for positive values:

FMRS Rx,Sn
CMP Rx,#0
BEQ label

If the input values can include negative numbers, including negative zero, you can use
the following code:

FMRS Rx, Sn
CMP Rx, #0x80000000
CMPNE Rx, #0
BEQ label

Using a temporary register is even faster:
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 18-7
Unrestricted Access Non-Confidential

VFP Programmers Model
FMRS Rx,Sn
MOVS Rt,Rx,LSL #1
BEQ label

Comparisons with particular values are also possible. For example, to check if a positive
value is greater or equal to +1.0, use:

FMRS Rx,Sn
CMP Rx,#0x3F800000
BGE label

When comparisons are required for double-precision values, or when IEEE 754
standard comparisons are required, it is safer to use the FCMP and FCMPE instructions with
FMSTAT.

Underflow

In the generation of Underflow exceptions, the after rounding form of tininess and the
subnormalization loss form of loss of accuracy as described in the IEEE 754 standard
are used.

In flush-to-zero mode, results that are tiny before rounding, as described in the IEEE
754 standard, are flushed to a positive zero, and the UFC flag, FPSCR[3], is set. Support
code is not involved. See the ARM Architecture Reference Manual for information on
flush-to-zero mode.

When the VFP11 coprocessor is not in flush-to-zero mode, any operation with a risk of
producing a tiny result bounces to support code. If the operation does not produce a tiny
result, it returns the computed result, and the UFC flag, FPSCR[3], is not set. The IXC
flag, FPSCR[4], is set if the operation is inexact. If the operation produces a tiny result,
the result is a subnormal or zero value, and the UFC flag, FPSCR[3], is set. See
Underflow exception on page 20-21 for more information on underflow handling.

Exceptions

Exceptions are taken in the VFP11 coprocessor in an imprecise manner. When
exception processing begins, the states of the MPCore processor and the VFP11
coprocessor might not be the same as when the exception occurred. Exceptional
instructions cause the VFP11 coprocessor to enter the exceptional state, and the next
VFP11 instruction triggers exception processing. After the issue of the exceptional
instruction and before exception processing begins, non-VFP11 instructions and some
VFP11 instructions can be executed and retired. Any source registers involved in the
exceptional instruction are preserved, and the destination register is not overwritten on
entry to the support code. If the detected exception enable bit is not set, the support code
returns to the program flow at the point of the trigger instruction after processing the
exception. If the detected exception enable bit is set, and a user trap handler is installed,
18-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Programmers Model
the support code passes control to the user trap handler. If the exception is overflow or
underflow, the intermediate result specified by the IEEE 754 standard is made available
to the user trap handler.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 18-9
Unrestricted Access Non-Confidential

VFP Programmers Model
18.3 ARMv5TE coprocessor extensions

This section describes the syntax and usage of the four ARMv5TE architecture
coprocessor extension instructions:

• FMDRR

• FMRRD on page 18-11

• FMSRR on page 18-12

• FMRRS on page 18-13.

Note
 These instructions are implementations of the MCRR and MRRC instructions, that the ARM
Architecture Reference Manual describes.

18.3.1 FMDRR

FMDRR transfers data from two MPCore registers to a VFP11 double-precision register.
The MPCore registers do not have to be contiguous. Figure 18-1 shows the format of
the FMDRR instruction.

Figure 18-1 FMDRR instruction format

Syntax

FMDRR {<cond>} <Dm>, <Rd>, <Rn>

where:

<cond> Is the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

<Dm> Specifies the destination double-precision VFP11 coprocessor register.

<Rd> Specifies the source MPCore register for the lower 32 bits of the operand.

<Rn> Specifies the source MPCore register for the upper 32 bits of the operand.

Architecture version

D variants only

Dm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond 1 1 0 0 0 1 0 0 Rn Rd 1 0 1 1 0 0 0 1
18-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Programmers Model
Exceptions

None

Operation

if ConditionPassed(cond) then
Dm[upper half] = Rn
Dm[lower half] = Rd

Notes

Conversions In the programmers model, FMDRR does not perform any conversion of the
value transferred. Arithmetic instructions using either Rd or Rn treat the
value as an integer, whereas most VFP instructions treat the Dm value as
a double-precision floating-point number.

18.3.2 FMRRD

FMRRD transfers data in a VFP11 double-precision register to two MPCore registers. The
MPCore registers do not have to be contiguous. Figure 18-2 shows the format of the
FMRRD instruction.

Figure 18-2 FMRRD instruction format

Syntax

FMRRD {<cond>} <Rd>, <Rn>, <Dm>

where:

<cond> Is the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

<Rd> Specifies the destination MPCore register for the lower 32 bits of the
operand.

<Rn> Specifies the destination MPCore register for the upper 32 bits of the
operand.

<Dm> Specifies the source double-precision VFP11 coprocessor register.

Dm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond 1 1 0 0 0 1 0 1 Rn Rd 1 0 1 1 0 0 0 1
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 18-11
Unrestricted Access Non-Confidential

VFP Programmers Model
Architecture version

D variants only

Exceptions

None

Operation

if ConditionPassed(cond) then
Rn = Dm[upper half]
Rd = Dm[lower half]

Notes

Use of r15 If r15 is specified for <Rd> or <Rn>, the results are Unpredictable.

Conversions In the programmers model, FMRRD does not perform any conversion of the
value transferred. Arithmetic instructions using Rd and Rn treat the
contents as an integer, whereas most VFP instructions treat the Dm value
as a double-precision floating-point number.

18.3.3 FMSRR

FMSRR transfers data in two MPCore registers to two consecutively numbered
single-precision VFP11 registers, Sm and S(m + 1). The MPCore registers do not have
to be contiguous. Figure 18-3 shows the format of the FMSRR instruction.

Figure 18-3 FMSRR instruction format

Syntax

FMSRR {<cond>} <registers>, <Rd>, <Rn>

where:

<cond> Is the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

Sm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond 1 1 0 0 0 1 0 0 Rn Rd 1 0 1 0 0 0 M 1
18-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Programmers Model
<registers> Specifies the pair of consecutively numbered single-precision destination
VFP11 registers, separated by a comma and surrounded by brackets. If m
is the number of the first register in the list, the list is encoded in the
instruction by setting Sm to the top four bits of m and M to the bottom bit
of m. For example, if <registers> is {S1, S2}, the Sm field of the
instruction is b0000 and the M bit is 1.

<Rd> Specifies the source MPCore register for the Sm VFP11 single-precision
register.

<Rn> Specifies the source MPCore register for the S(m + 1) VFP11
single-precision register.

Architecture version

All

Exceptions

None

Operation

If ConditionPassed(cond) then
Sm = Rd
S(m + 1) = Rn

Notes

Conversions In the programmers model, FMSRR does not perform any conversion
of the value transferred. Arithmetic instructions using Rd and Rn
treat the contents as an integer, whereas most VFP instructions
treat the Sm and S(m + 1) values as single-precision floating-point
numbers.

Invalid register lists

If Sm is b1111 and M is 1 (an encoding of S31) the instruction is
Unpredictable.

18.3.4 FMRRS

FMRRS transfers data in two consecutively numbered single-precision VFP11 registers to
two MPCore registers. The MPCore registers do not have to be contiguous. Figure 18-4
on page 18-14 shows the format of the FMRRS instruction.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 18-13
Unrestricted Access Non-Confidential

VFP Programmers Model
Figure 18-4 FMRRS instruction format

Syntax

FMRRS {<cond>} <Rd>, <Rn>, <registers>

where:

<cond> Is the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

<Rd> Specifies the destination MPCore register for the Sm VFP11 coprocessor
single-precision value.

<Rn> Specifies the destination MPCore register for the S(m + 1) VFP11
coprocessor single-precision value.

<registers> Specifies the pair of consecutively numbered single-precision VFP11
source registers, separated by a comma and surrounded by brackets. If m
is the number of the first register in the list, the list is encoded in the
instruction by setting Sm to the top four bits of m and M to the bottom bit
of m. For example, if <registers> is {S16, S17}, the Sm field of the
instruction is b1000 and the M bit is 0.

Architecture version

All

Exceptions

None

Operation

If ConditionPassed(cond) then
Rd = Sm
Rn = S(m + 1)

Sm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond 1 1 0 0 0 1 0 1 Rn Rd 1 0 1 0 0 0 M 1
18-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Programmers Model
Notes

Conversions In the programmers model, FMRRS does not perform any
conversion of the value transferred. Arithmetic instructions using
Rd and Rn treat the contents as an integer, whereas most VFP11
instructions treat the Sm and S(m + 1) values as single-precision
floating-point numbers.

Invalid register lists

If Sm is b1111 and M is 1 (an encoding of S31) the instruction is
Unpredictable.

Use of r15 If r15 is specified for Rd or Rn, the results are Unpredictable.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 18-15
Unrestricted Access Non-Confidential

VFP Programmers Model
18.4 VFP11 system registers

The VFPv2 architecture describes the following three system registers that must be
present in a VFP system:

• Floating-Point System ID Register, FPSID

• Floating-Point Status and Control Register, FPSCR

• Floating-Point Exception Register, FPEXC.

The VFP11 coprocessor provides sufficient information for processing all exceptional
conditions encountered by the hardware. In an exceptional situation, the hardware
provides:

• the exceptional instruction

• the instruction that might have been issued to the VFP11 coprocessor before
detection of the exception

• exception status information:

— type of exception

— number of remaining short vector iterations after an exceptional iteration.

To support exceptional conditions, the VFP11 coprocessor provides two additional
registers:

• Floating-Point Instruction Register, FPINST

• Floating-Point Instruction Register 2, FPINST2.

Also, the FPEXC register contains additional bits to support exceptional conditions.

These registers are designed to be used with the support code software available from
ARM Limited. As a result, this document does not fully specify exception handling in
all cases.

The coprocessor also provides two feature registers:

• Media and VFP Feature Register 0 on page 18-25, MVFR0

• Media and VFP Feature Register 1 on page 18-27, MVFR1.

Table 18-3 shows the VFP11 system registers.

Table 18-3 VFP11 system registers

Register
Access
mode

Access
type

Reset
state

Floating-Point System ID Register, FPSID Any RO 0x410120B4

Floating-Point Status and Control Register, FPSCR Any R/W 0x00000000

Floating-Point Exception Register, FPEXC Privileged R/W 0x00000000
18-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Programmers Model
Use the FMRX instruction to transfer the contents of VFP11 registers to MPCore registers
and the FMXR instruction to transfer the contents of MPCore registers to VFP11 registers.

Table 18-4 shows the MPCore processor modes for accessing the VFP11 system
registers.

Table 18-4 shows that a privileged MPCore mode is sometimes required to access a
VFP11 system register. When a privileged mode is required, an instruction that tries to
access a register in a nonprivileged mode takes the Undefined Instruction exception.

The following sections describe the VFP11 system registers:

• Floating-Point System ID Register, FPSID on page 18-18

Floating-Point Instruction Register, FPINST Privileged R/W 0xEE000A00

Floating-Point Instruction Register 2, FPINST2 Privileged R/W UNP

Media and VFP Feature Register 0, MVFR0 Any RO 0x11111111

Media and VFP Feature Register 1, MVFR1 Any RO 0x00000000

Table 18-4 Accessing VFP11 system registers

FMXR/FMRX
<reg> field

MPCore processor mode

Register
VFP11 coprocessor
enabled

VFP11 coprocessor
disabled

FPSID b0000 Any mode Privileged mode

FPSCR b0001 Any mode Nonea

a. An instruction that tries to access FPSCR while the VFP11 coprocessor is
disabled takes the Undefined Instruction exception.

FPEXC b1000 Privileged mode Privileged mode

FPINST b1001 Privileged mode Privileged mode

FPINST2 b1010 Privileged mode Privileged mode

MVFR0 b0111 Any mode Privileged mode

MVFR1 b0110 Any mode Privileged mode

Table 18-3 VFP11 system registers (continued)

Register
Access
mode

Access
type

Reset
state
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 18-17
Unrestricted Access Non-Confidential

VFP Programmers Model
• Floating-Point Status and Control Register, FPSCR on page 18-19

• Floating-point exception register, FPEXC on page 18-22

• Instruction registers, FPINST and FPINST2 on page 18-25.

18.4.1 Floating-Point System ID Register, FPSID

FPSID is a read-only register that identifies the VFP11 coprocessor. Figure 18-5 shows
the FPSID bit fields.

Figure 18-5 Floating-Point System ID Register

Table 18-5 describes the FPSID bit fields.

SW
Format

SNG
Architecture

Revision

31 24 23 22 21 20 19 16 15 8 7 4 3 0

Implementer Part number Variant

Table 18-5 FPSID bit fields

Bit Meaning Value

[31:24] Implementer 0x41

A (ARM Limited)

[23] Hardware/software 0
Hardware implementation

[22:21] FSTMX/FLDMX format b00
Format 1

[20] Precisions supported 0
Both single-precision and double-precision data supported

[19:16] Architecture version b0001
VFPv2 architecture
18-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Programmers Model
18.4.2 Floating-Point Status and Control Register, FPSCR

FPSCR is a read/write register that can be accessed in both privileged and unprivileged
modes. All bits described as SBZ in Figure 18-6 are reserved for future expansion. They
must be initialized to zeros. To ensure that these bits are not modified, code other than
initialization code must use read/modify/write techniques when writing to FPSCR.
Failure to observe this rule can cause Unpredictable results in future systems.
Figure 18-6 shows the FPSCR bit fields.

Figure 18-6 Floating-Point Status and Control Register

[15:8] Part number 0x20

VFP11

[7:4] Variant 0xB

MPCore VFP interface

[3:0] Revision 0x4

Fourth version

Table 18-5 FPSID bit fields (continued)

Bit Meaning Value

31 30 29 28 25 24 23 22 21 20 19 15 12 11 10 9 8 7 4 3 2 1 0

IXC

IDC

SBZ

DZE

IOE

UFE

OFE

SBZ

IXE

IDE

LEN

Rmode

Stride

SBZ

SBZ

DN

FZ

N Z C V

UFC

OFC

DZC

IOC

27 26 18 16 14 13 6 5
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 18-19
Unrestricted Access Non-Confidential

VFP Programmers Model
Table 18-6 describes the FPSCR bit fields.

Table 18-6 Encoding of the Floating-Point Status and Control Register

Bits Name Meaning

[31] N Set if comparison produces a less than result

[30] Z Set if comparison produces an equal result

[29] C Set if comparison produces an equal, greater than, or unordered result

[28] V Set if comparison produces an unordered result

[27:26] - Should Be Zero

[25] DN Default NaN mode enable bit:

1 = default NaN mode enabled

0 = default NaN mode disabled.

[24] FZ Flush-to-zero mode enable bit:

1 = flush-to-zero mode enabled

0 = flush-to-zero mode disabled.

[23:22] Rmode Rounding mode control field:

b00 = Round to nearest (RN) mode

b01 = Round towards plus infinity (RP) mode

b10 = Round towards minus infinity (RM) mode

b11 = Round towards zero (RZ) mode.

[21:20] Stride See Vector length and stride control on page 18-21

[19] - Should Be Zero

[18:16] LEN See Vector length and stride control on page 18-21

[15] IDE Input Subnormal exception enable bit

[14:13] - Should Be Zero

[12] IXE Inexact exception enable bit

[11] UFE Underflow exception enable bit

[10] OFE Overflow exception enable bit

[9] DZE Division by Zero exception enable bit

[8] IOE Invalid Operation exception enable bit
18-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Programmers Model
Vector length and stride control

FPSCR[18:16] is the LEN field and controls the vector length for VFP instructions that
operate on short vectors. The vector length is the number of iterations in a short vector
instruction.

FPSCR[21:20] is the STRIDE field and controls the vector stride. The vector stride is
the increment value used to select the registers involved in the next iteration of the short
vector instruction.

[7] IDC Input Subnormal cumulative flag

[6:5] - Should Be Zero

[4] IXC Inexact cumulative flag

[3] UFC Underflow cumulative flag

[2] OFC Overflow cumulative flag

[1] DZC Division by Zero cumulative flag

[0] IOC Invalid Operation cumulative flag

Table 18-6 Encoding of the Floating-Point Status and Control Register (continued)

Bits Name Meaning
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 18-21
Unrestricted Access Non-Confidential

VFP Programmers Model
The rules for vector operation do not permit a vector to use the same register more than
once. LEN and STRIDE combinations that use a register more than once produce
Unpredictable results, as Table 18-7 shows. Some combinations that work normally in
single-precision short vector instructions cause Unpredictable results in
double-precision instructions.

18.4.3 Floating-point exception register, FPEXC

In a bounce situation, the FPEXC register records the exceptional status. The FPEXC
register information assists the support code in processing the exceptional condition or
reporting the condition to a system trap handler or a user trap handler.

Table 18-7 Vector length and stride combinations

LEN
Vector
length STRIDE

Vector
stride

Single-precision
vector instructions

Double-precision
vector instructions

b000 1 b00 - All instructions are scalar All instructions are scalar

b000 1 b11 - Unpredictable Unpredictable

b001 2 b00 1 Work normally Work normally

b001 2 b11 2 Work normally Work normally

b010 3 b00 1 Work normally Work normally

b010 3 b11 2 Work normally Unpredictable

b011 4 b00 1 Work normally Work normally

b011 4 b11 2 Work normally Unpredictable

b100 5 b00 1 Work normally Unpredictable

b100 5 b11 2 Unpredictable Unpredictable

b101 6 b00 1 Work normally Unpredictable

b101 6 b11 2 Unpredictable Unpredictable

b110 7 b00 1 Work normally Unpredictable

b110 7 b11 2 Unpredictable Unpredictable

b111 8 b00 1 Work normally Unpredictable

b111 8 b11 2 Unpredictable Unpredictable
18-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Programmers Model
You must save and restore the FPEXC register whenever changing the context. If the
EX flag, FPEXC[31], is set, then the VFP11 coprocessor is in the exceptional state, and
you must also save and restore the FPINST and FPINST2 registers. You can write the
context switch code to determine from the EX flag which registers to save and restore
or to save all three.

The EN bit, FPEXC[30], is the VFP enable bit. Clearing EN disables the VFP11
coprocessor. The VFP11 coprocessor clears the EN bit on reset.

The INV flag, FPEXC[7], signals Input exceptions. An Input exception is a condition
in which the hardware cannot process one or more input operands according to the
architectural specifications. This includes subnormal inputs when the VFP11
coprocessor is not in flush-to-zero mode and NaNs when the VFP11 coprocessor is not
in default NaN mode.

The UFC flag, FPEXC[3], is set whenever an operation has the potential to generate a
result that is below the minimum threshold for the destination precision.

The OFC flag, FPEXC[2], is set whenever an operation has the potential to generate a
result that, after rounding, exceeds the largest representable number in the destination
format.

The IOC flag, FPEXC[0], is set whenever an operation has the potential to generate a
result that cannot be represented or is not defined.

Note
 To prevent an infinite loop of exceptions, the support code must clear the EX flag,
FPEXC[31], immediately on entry to the exception code. All exception flags must be
cleared before returning from exception code to user code.

Figure 18-7 shows the FPEXC bit fields.

Figure 18-7 Floating-Point Exception Register

IOC

31 30 29 28 10 8 7 6 4 3 2 1 0

SBZ

SBZ

UFC

OFC

INV

VECITRSBZ

EX

EN

SBZ

FP2V

27 11
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 18-23
Unrestricted Access Non-Confidential

VFP Programmers Model
Table 18-8 describes the bit fields of the FPEXC register.

Table 18-8 Encoding of the Floating-Point Exception Register

Bit Name Description

[31] EX Exception flag.

When EX is set, the VFP11 coprocessor is in the exceptional state.

EX must be cleared by the exception handling routine.

[30] EN VFP enable bit.

Setting EN enables the VFP11 coprocessor. Reset clears EN.

[29] - Should Be Zero.

[28] FP2V FPINST2 instruction valid flag.

Set when FPINST2 contains a valid instruction.

FP2V must be cleared by the exception handling routine.

[27:11] - Should Be Zero.

[10:8] VECITR Vector iteration count field.

VECITR contains the number of remaining short vector iterations after a potential exception was
detected in one of the iterations:

b000 = 1 iteration

b001 = 2 iterations

b010 = 3 iterations

b011 = 4 iterations

b100 = 5 iterations

b101 = 6 iterations

b110 = 7 iterations

b111 = 0 iterations.

[7] INV Input exception flag.

Set if the VFP11 coprocessor is not in flush-to-zero mode and an operand is subnormal or if the
VFP11 coprocessor is not in default NaN mode and an operand is a NaN.

[6:4] - Should Be Zero.

[3] UFC Potential underflow flag.

Set if the VFP11 coprocessor is not in flush-to-zero mode and a potential underflow condition
exists.
18-24 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Programmers Model
18.4.4 Instruction registers, FPINST and FPINST2

The VFP11 coprocessor has two instruction registers:

• The FPINST register contains the exceptional instruction.

• The FPINST2 register contains the instruction that was issued to the VFP11
coprocessor before the exception was detected. This instruction was retired in the
MPCore processor and cannot be reissued. It must be executed by support code.

The FPINST and FPINST2 are accessible only in privileged modes.

The instruction in the FPINST register is in the same format as the issued instruction
but is modified in several ways. The condition code flags, FPINST[31:28], are forced
to b1110, the AL (always) condition. If the instruction is a short vector, the source and
destination registers that reference vectors are updated to point to the source and
destination registers of the exceptional iteration. See Underflow exception on
page 20-21 for more information.

The instruction in the FPINST2 register is in the same format as the issued instruction
but is modified by forcing the condition code flags, FPINST2[31:28] to b1110, the AL
(always) condition.

18.4.5 Media and VFP Feature Register 0

The purpose of the Media and VFP Feature Register 0 is to provide information about
the features that the VFP unit contains.

Media and VFP Feature Register 0 is:

• a 32-bit read-only register

[2] OFC Potential overflow flag.

Set if the OFE bit, FPSCR[10], is set, the VFP11 coprocessor is not in RunFast mode, and a
potential overflow condition exists.

[1] - Should Be Zero.

[0] IOC Potential invalid operation flag.

Set if the IOE bit, FPSCR[8], is set, the VFP11 coprocessor is not in RunFast mode, and a potential
invalid operation condition exists.

Table 18-8 Encoding of the Floating-Point Exception Register (continued)

Bit Name Description
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 18-25
Unrestricted Access Non-Confidential

VFP Programmers Model
• accessible in any mode when the VFP is enabled by the EN bit, see Floating-point
exception register, FPEXC on page 18-22

• accessible only in Privileged modes when the VFP is disabled by the EN bit.

Figure 18-8 shows the bit arrangement for Media and VFP Feature Register 0.

Figure 18-8 Media and VFP Feature Register 0 format

Table 18-9 shows how the bit values correspond with the Media and VFP Feature
Register 0 functions.

The values in the Media and VFP Feature Register 0 are implementation defined.

-

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

- - - - - - -

Table 18-9 Media and VFP Feature Register 0 bit functions

Bits Field Function

[31:28] - Indicates the VFP hardware support level when user traps are disabled.

0x1, In MPCore processors when Flush-to-Zero and Default_NaN and Round-to-Nearest are all
selected in FPSCR, the coprocessor does not require support code. Otherwise floating-point support
code is required.

[27:24] - Indicates support for short vectors.

0x1, MPCore processors support short vectors.

[23:20] - Indicates support for hardware square root.

0x1, MPCore processors support hardware square root.

[19:16] - Indicates support for hardware divide.

 0x1, MPCore processors support hardware divide.

[15:12] - Indicates support for user traps.

0x1, MPCore processors support software traps, support code is required.

[11:8] - Indicates support for double precision VFP.

0x1, MPCore processors support v2.

[7:4] - Indicates support for single precision VFP.

0x1, MPCore processors support v2.

[3:0] - Indicates support for the media register bank.

0x1, MPCore processors support 16, 64-bit registers.
18-26 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Programmers Model
18.4.6 Media and VFP Feature Register 1

The purpose of the Media and VFP Feature Register 1 is to provide information about
the features that the VFP unit contains.

Media and VFP Feature Register 1 is:

• a 32-bit read-only register

• accessible in any mode when the VFP is enabled by the EN bit, see Floating-point
exception register, FPEXC on page 18-22

• accessible only in Privileged modes when the VFP is disabled by the EN bit.

Figure 18-9 shows the bit arrangement for Media and VFP Feature Register 1.

Figure 18-9 Media and VFP Feature Register 1 format

Table 18-10 shows how the bit values correspond with the Media and VFP Feature
Register 1 functions.

The values in the Media and VFP Feature Register 1 are implementation defined.

31 8 7 3 0

- - -

41112

-

Table 18-10 Media and VFP Feature Register 1 bit functions

Bits Field Function

[31:28] - Reserved

UNP/SBZ.

[11:8] - Indicates support for media extension, single precision floating-point instructions.

0x0, no support in MP11 CPUs.

[7:4] - Indicates support for media extension, integer instructions.

0x0, no support in MP11 CPUs.

[3:0] - Indicates support for media extension, load/store instructions.

0x0, no support in MP11 CPUs.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 18-27
Unrestricted Access Non-Confidential

VFP Programmers Model
18-28 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 19
VFP Instruction Execution

This chapter describes the VFP11 instruction pipeline and its relationship with the
ARM processor instruction pipeline. It contains the following sections:

• About instruction execution on page 19-2

• Serializing instructions on page 19-3

• Interrupting the VFP11 coprocessor on page 19-4

• Forwarding on page 19-5

• Hazards on page 19-7

• Operation of the scoreboards on page 19-8

• Data hazards in full-compliance mode on page 19-15

• Data hazards in RunFast mode on page 19-19

• Resource hazards on page 19-20

• Parallel execution on page 19-23

• Execution timing on page 19-25.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 19-1
Unrestricted Access Non-Confidential

VFP Instruction Execution
19.1 About instruction execution

Features of the VFP11 implementation of the instruction pipelines include the
following:

• The FMXR, FMRX, and FMSTAT instructions stall in the VFP11 LS pipeline until all
currently executing instructions are completed. You can use these serializing
instructions to:

— capture condition codes and exception status

— modify the mode of operation of subsequent instructions

— create an exception boundary.

See Serializing instructions on page 19-3.

• Load or store instructions that cause a Data Abort exception restart after interrupt
service. LDM and STM instructions detect exceptional conditions after the first
transfer and restart after interrupt service if reissued.

See Interrupting the VFP11 coprocessor on page 19-4.

• To reduce stall time, the VFP11 coprocessor forwards data:

— from load instructions to CDP instructions

— from CDP instructions to CDP instructions.

See Forwarding on page 19-5.

• In full-compliance mode, the VFP11 coprocessor implements full data hazard and
resource hazard detection.

RunFast mode guarantees no instruction bouncing for applications that require
less strict hazard detection.

See Hazards on page 19-7 and Operation of the scoreboards on page 19-8.

• The L/S, FMAC, and DS pipelines operate independently, enabling data transfer
and CDP operations to execute in parallel.

See Parallel execution on page 19-23.

Execution timing on page 19-25 describes VFP11 instruction throughput and latency.
19-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Instruction Execution
19.2 Serializing instructions

A serializing instruction is one that stalls because of activity in the VFP11 pipelines
without the presence of a register or resource hazard. In general, an access to a VFP11
control or status register is a serializing instruction.

The serializing instructions are FMRX and FMXR, including the FMSTAT instruction.
Serializing instructions stall the VFP11 coprocessor in the Issue stage and the ARM
processor in the Execute 2 stage until:

• the VFP11 pipeline is past the point of updating either the condition codes or the
exception status

• a write to a system register can no longer affect the operation of a current or
pending instruction.

An FMRX or FMSTAT instruction stalls until all prior floating-point operations are
completed, and the data to be written by the VFP11 coprocessor is valid. For example,
a compare operation updates the FPSCR register condition codes in the Writeback stage
of the compare.

An FMXR instruction stalls until all prior floating-point operations are past the point of
being affected by the instruction. For example, writing to the FPSCR register stalls until
the point when changing the control bits cannot affect any operation currently executing
or awaiting execution. Writing to the FPEXC, FPINST, or FPINST2 register stalls until
the pipeline is completely clear.

Uses of serializing instructions include:

• capturing condition codes and exception status

• delineating a block of instructions for execution with the ability to capture the
exception status of that block of instructions

• modifying the mode of operation of subsequent instructions, such as the rounding
mode or vector length.

While no instruction can change the contents of the FPSID register, you can access the
FPSID register with FMRX or FMXR as a general-purpose serializing operation or to create
an exception boundary.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 19-3
Unrestricted Access Non-Confidential

VFP Instruction Execution
19.3 Interrupting the VFP11 coprocessor

Instructions are issued to the VFP11 coprocessor directly from the ARM prefetch unit.
The VFP11 coprocessor has no external interface beyond the ARM processor and
cannot be separately interrupted by external sources. Any interrupt that causes a change
of flow in the MPCore processor is also reflected to the VFP11 coprocessor. Any VFP
instruction that is cancelled because of condition code failure in the MPCore pipeline is
also cancelled in the VFP11 pipeline.

If the interrupt is the result of a Data Abort condition, the load or store operation that
caused the abort restarts after interrupt processing is complete. Load and store multiple
instructions can detect some exception conditions and interrupt the operation after the
initial transfer. If the load or store instruction is reissued after interrupt processing, it
can restart with the initial transfer. The source data is guaranteed to be unchanged, and
no operations that depend on the load or store data can execute until the load or store
operation is complete.

When interrupt processing begins, there can be a delay before the VFP11 coprocessor
is available to the interrupt routine. Any prior short vector instruction that passes the
MPCore Execute 2 stage also passes the VFP11 Execute 1 stage and executes to
completion uninterrupted. The maximum delay during which the VFP11 coprocessor is
unavailable is equal to the time it takes to process a short vector of eight single-precision
divide or square root iterations. Such an operation can cause a delay of as many as 114
cycles after the short vector divide or square root enters the VFP11 Execute 1 stage.

In systems that require fast response time and access to the VFP11 coprocessor by the
service routine, avoid short vector divide and short vector square root operations. All
other instructions, including short vector instructions, have little or no impact. Limiting
the number of VFP11 registers that must be saved and used in the service routine also
reduces startup time. If the VFP11 coprocessor is not required in the service routine,
you can disable it with EN bit (FPEXC[30]). This eliminates the necessity of saving the
VFP11 coprocessor state. See Application Note 98, VFP Support Code.
19-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Instruction Execution
19.4 Forwarding

In general, any forwarding operation reduces the stall time of a dependent instruction
by one cycle. The VFP11 coprocessor forwards data from load instructions to CDP
instructions and from CDP instructions to CDP instructions.

The VFP11 coprocessor does not forward in the following cases:

• from an instruction that produces integer data

• to a store instruction (FST, FSTM, MRC, or MRRC)

• to an instruction of different precision.

In the examples that follow, the stall counts given are based on two data transfer
assumptions:

• accesses by load operations result in cache hits and are able to deliver one or two
data words per cycle

• store operations write directly to the Write Buffer or cache and can transfer one
or two data words per cycle.

When these assumptions are valid, the VFP11 coprocessor operates at its highest
performance. When these assumptions are not valid, load and store operations are
affected by the delay required to access data. Example 19-1, Example 19-2, and
Example 19-3 on page 19-6 illustrate the capabilities of the VFP11 coprocessor in ideal
conditions.

In Example 19-1, the second FADDS instruction depends on the result of the first FADDS
instruction. The result of the first FADDS instruction is forwarded, reducing the stall from
eight cycles to seven cycles.

Example 19-1 Data forwarded to dependent instruction

FADDS S1, S2, S3
FADDS S8, S9, S1

In Example 19-2, there is no data forwarding of the double-precision FMULD data in
D2 to the single-precision FADDS data in S5, even though S5 is the upper half of D2.

Example 19-2 Mixed-precision data not forwarded

FMULD D2, D0, D1
FADDS S12, S13, S5
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 19-5
Unrestricted Access Non-Confidential

VFP Instruction Execution
In Example 19-3, the double-precision FSTD stalls for eight cycles until the result of
the FMULD is written to the register file. No forwarding is done from the FMULD to the store
instruction.

Example 19-3 Data not forwarded to store instruction

FMULD D1, D2, D3
FSTD D1, [Rx]
19-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Instruction Execution
19.5 Hazards

The VFP11 coprocessor incorporates full hazard detection with a fully-interlocked
pipeline protocol. No compiler scheduling is required to avoid hazard conditions. The
source and destination scoreboards process interlocks caused by unavailable source or
destination registers or by unavailable data. The scoreboards stall instructions until all
data operands and destination registers are available before the instruction is issued to
the instruction pipeline.

The determination of hazards and interlock conditions is different in full-compliance
mode and RunFast mode. RunFast mode guarantees no bounce conditions and has a less
strict hazard detection mechanism, enabling instructions to begin execution earlier than
in full-compliance mode.

There are two VFP11 pipeline hazards:

• A data hazard is a combination of instructions that creates the potential for
operands to be accessed in the wrong order.

— A Read-After-Write (RAW) data hazard occurs when the pipeline creates
the potential for an instruction to read an operand before a prior instruction
writes to it. It is a hazard to the intended read-after-write operand access.

— A Write-After-Read (WAR) data hazard occurs when the pipeline creates
the potential for an instruction to write to a register before a prior
instruction reads it. It is a hazard to the intended write-after-read operand
access.

— A Write-After-Write (WAW) data hazard occurs when the pipeline creates
the potential for an instruction to write to a register before a prior
instruction writes to it. It is a hazard to the intended write-after-write
operand access.

• Resource hazard. See Resource hazards on page 19-20.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 19-7
Unrestricted Access Non-Confidential

VFP Instruction Execution
19.6 Operation of the scoreboards

The VFP11 processor detects all hazard conditions that exist between issued and
executing instructions. It uses two scoreboards to ensure that all source and destination
registers for an instruction contain valid data and are available for reading or writing:

• The destination scoreboard contains a lock for each destination register for the
current operation.

• The source scoreboard contains a lock for each source register for the current
operation.

In the Decode stage of the VFP11 pipeline, the VFP11 coprocessor determines the
source and destination registers that are involved in an operation and generates a lock
mask for them. In a short vector operation, the lock mask includes the registers involved
in every iteration of the operation. In the Issue stage, the VFP11 coprocessor checks and
updates the source and destination scoreboards. If it detects a hazard between the
instruction in the Issue stage and a prior instruction, the scoreboards are not updated,
and the instruction stalls in the Issue stage.

A VFP11 instruction can begin execution only when its source and destination registers
are free of locks. A short vector operation can begin only when the registers for all its
iterations are free of locks. When a short vector instruction proceeds in the pipeline
beyond the Issue stage, all the registers involved in the operation are locked.

The source scoreboard clears a source register lock in the first Execute 1 stage of the
pipeline or in the first Execute 1 stage of the iteration. In store multiple instructions, the
source scoreboard clears source register locks in the Execute stage in which the
instruction writes the store data to the MPCore processor.

The destination scoreboard clears the destination register lock in the cycle before the
result data is written back to the register file or is available for forwarding (Execute 7 in
the FMAC pipeline, Execute 4 in the DS pipeline). In a load operation, the destination
scoreboard normally clears the destination register lock in the Memory 2 stage. If the
load is delayed, the destination scoreboard clears the destination register lock in the
same cycle as the writeback to the register file.

19.6.1 Scoreboard operation when an instruction bounces

When a bounce occurs in full-compliance mode, support code is called to complete the
operation and to deliver the result and the exception status to the user trap handler. The
source scoreboard ensures that all source registers for the operation are preserved for
the support code. In a short vector operation, this includes the source registers for the
19-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Instruction Execution
bounced iteration and for any iterations remaining after the bounced iteration. The
preserved source registers include the destination register for a multiply and accumulate
instruction.

Because RunFast mode guarantees that no bouncing is possible, source registers do not
have to be preserved after they are used by the instruction. For all scalar operations and
nonmultiple store operations, no source registers are locked in RunFast mode. In short
vector operations, the length of the vector determines which source registers are locked.
When the vector length exceeds four single-precision iterations, the source scoreboard
locks the source registers for iterations 5 and above. When the vector length exceeds
two double-precision iterations, the source scoreboard locks the source registers for
iterations 3 and above.

19.6.2 Single-precision source register locking

In full-compliance mode, the source scoreboard locks all source registers in the Issue
stage of the instruction. In RunFast mode, the source scoreboard locks the source
registers for only iterations 5, 6, 7, and 8. Table 19-1 summarizes source register locking
in single-precision operations.

For the following single-precision short vector instruction, the LEN field contains b100,
selecting a vector length of five iterations:

FADDS S8, S16, S24

The FADDS instruction performs the following operations:

Table 19-1 Single-precision source register locking

LEN Vector length

Source registers locked in Issue stage

Full-compliance mode RunFast mode

b000 1 Iteration 1 registers -

b001 2 Iteration 1-2 registers -

b010 3 Iteration 1-3 registers -

b011 4 Iteration 1-4 registers -

b100 5 Iteration 1-5 registers Iteration 5 registers

b101 6 Iteration 1-6 registers Iteration 5-6 registers

b110 7 Iteration 1-7 registers Iteration 5-7 registers

b111 8 Iteration 1-8 registers Iteration 5-8 registers
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 19-9
Unrestricted Access Non-Confidential

VFP Instruction Execution
FADDS S8, S16, S24
FADDS S9, S17, S25
FADDS S10, S18, S26
FADDS S11, S19, S27
FADDS S12, S20, S28

In full-compliance mode, the source scoreboard locks S16-S20 and S24-S28 in the
Issue stage of the instruction.

In RunFast mode, the source scoreboard locks only the fifth iteration source registers,
S20 and S28.

19.6.3 Single-precision source register clearing

In full-compliance mode, the source scoreboard clears the source registers of each
iteration in the Execute 1 stage of the iteration. In RunFast mode, the source registers
for only iterations 5, 6, 7, and 8 are locked, and the source scoreboard begins clearing
them in the second Execute 1 cycle of the instruction. Table 19-2 summarizes source
register clearing in single-precision operations.

For the following single-precision short vector instruction, the LEN field contains b100,
selecting a vector length of five iterations:

FADDS S8, S16, S24

The FADDS instruction performs the following operations:

Table 19-2 Single-precision source register clearing

Execute 1 cycle

Source registers cleared in Execute 1 stage of each iteration

Full-compliance mode RunFast mode

1 Iteration 1 registers -

2 Iteration 2 registers Iteration 5 registers

3 Iteration 3 registers Iteration 6 registers

4 Iteration 4 registers Iteration 7 registers

5 Iteration 5 registers Iteration 8 registers

6 Iteration 6 registers -

7 Iteration 7 registers -

8 Iteration 8 registers -
19-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Instruction Execution
FADDS S8, S16, S24
FADDS S9, S17, S25
FADDS S10, S18, S26
FADDS S11, S19, S27
FADDS S12, S20, S28

In full-compliance mode, the source scoreboard clears the source registers of each
iteration in the Execute 1 cycle of the iteration.

In RunFast mode, the source scoreboard locks only the fifth iteration source registers,
S20 and S28. It clears S20 and S28 in the second Execute 1 cycle of the instruction.

19.6.4 Double-precision source register locking

In full-compliance mode, the source scoreboard locks all source registers in the Issue
stage of the instruction. In RunFast mode, the source scoreboard locks the source
registers for only iterations 3 and 4. Table 19-3 summarizes source register locking in
double-precision operations.

For the following double-precision, short vector instruction, the LEN field contains
b011, selecting a vector length of four iterations:

FADDD D4, D8, D12

The FADDD instruction performs the following operations:

FADDD D4, D8, D12
FADDD D5, D9, D13
FADDD D6, D10, D14
FADDD D7, D11, D15

In full-compliance mode, the source scoreboard locks D8-D11 and D12-D15 in the
Issue stage of the instruction.

Table 19-3 Double-precision source register locking

LEN
Vector
length

Source registers locked in Issue stage

Full-compliance mode RunFast mode

b000 1 Iteration 1 registers -

b001 2 Iteration 1-2 registers -

b010 3 Iteration 1-3 registers Iteration 3 registers

b011 4 Iteration 1-4 registers Iteration 3-4 registers
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 19-11
Unrestricted Access Non-Confidential

VFP Instruction Execution
In RunFast mode, the source scoreboard locks only the third iteration source registers,
D10 and D14, and the fourth iteration source registers, D11 and D15.

19.6.5 Double-precision source register clearing

The number of Execute 1 cycles required to clear the source registers of a
double-precision instruction depends on the throughput of the instruction, as the
following sections show:

• Instructions with one-cycle throughput

• Instructions with two-cycle throughput on page 19-13.

Instructions with one-cycle throughput

In full-compliance mode, the source scoreboard clears the source registers of each
iteration in the Execute 1 stage of the iteration. In RunFast mode, the source registers
for only iterations 3 and 4 are locked, and the source scoreboard begins clearing them
in the first Execute 1 cycle of the instruction. Table 19-4 summarizes source register
clearing for double-precision one-cycle instructions such as FADDD and FABSD.

For the following one-cycle, double-precision short vector instruction, the LEN field
contains b011, selecting a vector length of four iterations:

FADDD D4, D8, D12

The FADDD performs the following operations:

FADDD D4, D8, D12
FADDD D5, D9, D13
FADDD D6, D10, D14
FADDD D7, D11, D15

Table 19-4 Double-precision source register clearing for one-cycle instructions

Execute 1
cycle

Source registers cleared in Execute 1 stage of each iteration

Full-compliance mode RunFast mode

1 Iteration 1 registers Iteration 3 registers

2 Iteration 2 registers Iteration 4 registers

3 Iteration 3 registers -

4 Iteration 4 registers -
19-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Instruction Execution
In full-compliance mode, the source scoreboard clears the source registers of each
iteration in the Execute 1 cycle of the iteration.

In RunFast mode, the source scoreboard locks only the third iteration source registers,
D10 and D14, and the fourth iteration source registers, D11 and D15. It clears D10 and
D14 in the first Execute 1 cycle of the instruction and clears D11 and D15 in the second
Execute 1 cycle.

Instructions with two-cycle throughput

In full-compliance mode, the source scoreboard clears the source registers of each
iteration in the first Execute 1 cycle of the iteration. In RunFast mode, the source
registers for only iterations 3 and 4 are locked, and the source scoreboard begins
clearing them in the first Execute 1 cycle of the instruction. Table 19-5 summarizes
source register clearing for double-precision two-cycle instructions such as FMULD and
FMACD.

For the following two-cycle, double-precision, short vector instruction, the LEN field
contains b011, selecting a vector length of four iterations:

FMULD D4, D8, D12

The FMULD instruction performs the following operations:

FMULD D4, D8, D12
FMULD D5, D9, D13

Table 19-5 Double-precision source register clearing for two-cycle instructions

Execute 1
cycle

Source registers cleared in Execute 1 stage of each iteration

Full-compliance mode RunFast mode

1 Iteration 1 registers Iteration 3 registers

2 - -

3 Iteration 2 registers Iteration 4 registers

4 - -

5 Iteration 3 registers -

6 - -

7 Iteration 4 registers -

8 - -
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 19-13
Unrestricted Access Non-Confidential

VFP Instruction Execution
FMULD D6, D10, D14
FMULD D7, D11, D15

In full-compliance mode, the source scoreboard clears the source registers of each
iteration in the first Execute 1 cycle of the iteration.

In RunFast mode, only the third iteration source registers, D10 and D14, and the fourth
iteration source registers, D11 and D15, are locked. The source scoreboard clears D10
and D14 in the first Execute 1 cycle and clears D11 and D15 in the third Execute 1 cycle
of the instruction.
19-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Instruction Execution
19.7 Data hazards in full-compliance mode

The following sections give examples of data hazards in full-compliance mode:

• Status register RAW hazard example

• Load multiple-CDP RAW hazard example

• CDP-CDP RAW hazard example on page 19-17

• Load multiple-short vector CDP RAW hazard example on page 19-16

• Short vector CDP-load multiple WAR hazard example on page 19-17.

19.7.1 Status register RAW hazard example

In Example 19-4, the FMSTAT is stalled for four cycles in the Decode stage until the FCMPS
updates the condition codes in the FPSCR register. Two cycles later, the FMSTAT writes
the condition codes to the MPCore processor.

Example 19-4 FCMPS-FMSTAT RAW hazard

FCMPS S1, S2
FMSTAT

Table 19-6 shows the VFP11 pipeline stages for Example 19-4.

19.7.2 Load multiple-CDP RAW hazard example

In Example 19-5, the FADDS is stalled in the Issue stage for six cycles until the FLDM
makes its last transfer to the VFP11 coprocessor. S15 is forwarded from the load in
cycle 9 to the FADDS.

Example 19-5 FLDM-FADDS RAW hazard

FLDM [Rx], {S8-S15}

Table 19-6 FCMPS-FMSTAT RAW hazard

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11

FCMPS D I E1 E2 E3 E4 - - - - -

FMSTAT - D D D D D I E M1 M2 W
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 19-15
Unrestricted Access Non-Confidential

VFP Instruction Execution
FADDS S1, S2, S15

Table 19-7 shows the VFP11 pipeline stages for Example 19-5 on page 19-15.

19.7.3 Load multiple-short vector CDP RAW hazard example

In Example 19-6, the short vector FADDS is stalled in the Issue stage until the FLDM loads
all source registers required by the FADDS. In this case, the FADDS is stalled for three
cycles. Because the FADDS depends on the FLDM for only one register, S7, it does not have
to wait for completion of the FLDM. The S7 data is forwarded in cycle 6. The LEN field
contains b011, selecting a vector length of four iterations. The STRIDE field contains
b00, selecting a vector stride of one. The first source vector uses registers S7, S0, S1,
and S2, and the only FADDS source register loaded by the FLDM is S7. This example is
based on the assumption that the remaining source and destination registers are
available to the FADDS in cycle 6.

Example 19-6 FLDM-short vector FADDS RAW hazard

FLDM [R2], {S7-S14}
FADDS S16, S7, S25

Table 19-8 shows the VFP11 pipeline stages of the FLDM and the first iteration of the
short vector FADDS for Example 19-6.

Table 19-7 FLDM-FADDS RAW hazard

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FLDM D I E M1 M2 W W W W - - - - - - -

FADDS - D I I I I I I I E1 E2 E3 E4 E5 E6 E7

Table 19-8 FLDM-short vector FADDS RAW hazard

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

FLDM D I E M1 M2 W W W W - - - - - - - -

FADDS - D I I I I E1 E1 E1 E1 E2 E3 E4 E5 E6 E7 W
19-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Instruction Execution
19.7.4 CDP-CDP RAW hazard example

In Example 19-7, the FADDS is stalled in the Issue stage for seven cycles until the FMULS
data is written and forwarded in cycle 10 to the Issue stage of the FADDS.

Example 19-7 FMULS-FADDS RAW hazard

FMULS S4, S1, S0
FADDS S5, S4, S3

Table 19-9 shows the VFP11 pipeline stages of Example 19-7.

19.7.5 Short vector CDP-load multiple WAR hazard example

In Example 19-8, the load multiple FLDMS creates a WAR hazard to the source registers
of the FMULS. The LEN field contains b011, selecting a vector length of four iterations,
and the STRIDE field contains b00, selecting a vector stride of one. The VFP11
coprocessor stalls the FLDMS until the FMULS clears the scoreboard locks for all the source
registers, S16-S19 and S24-S27.

Example 19-8 Short vector FMULS-FLDMS WAR hazard

FMULS S8, S16, S24
FLDMS [R2], {S16-S27}

Table 19-10 on page 19-18 shows the VFP11 pipeline stages for the first iteration of
Example 19-8.

Table 19-9 FMULS-FADDS RAW hazard

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11

FMULS D I E1 E2 E3 E4 E5 E6 E7 W -

FADDS - D I I I I I I I I EI
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 19-17
Unrestricted Access Non-Confidential

VFP Instruction Execution
Table 19-10 Short vector FMULS-FLDMS WAR hazard

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FMULS D I E1 E1 E1 E1 E2 E3 E4 E5 E6 E7 W - - -

FLDMS - D I I I I I E M1 M2 W W W W W W
19-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Instruction Execution
19.8 Data hazards in RunFast mode

In RunFast mode, source registers for the FMAC and FMUL family of instructions are
locked:

• when the vector length exceeds four iterations in single-precision instructions

• when the vector length exceeds two iterations in double-precision instructions.

No source registers are locked for scalar instructions.

19.8.1 Short vector CDP-load multiple WAR hazard example

Example 19-9 is the same as Example 19-8 on page 19-17. The LEN field contains
b011, selecting a vector length of four iterations, and the STRIDE field contains b00,
selecting a vector stride of one. Executing these instructions in RunFast mode reduces
the cycle count of the FLDMS by four cycles.

Example 19-9 Short vector FMULS-FLDMS WAR hazard in RunFast mode

FMULS S8, S16, S24
FLDMS R2, {S16-S27}

Table 19-11 shows that the VFP11 coprocessor does not stall the FLDMS operation.

Table 19-11 Short vector FMULS-FLDMS WAR hazard in RunFast mode

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13

FMULS D I E1 E1 E1 E1 E2 E3 E4 E5 E6 E7 W

FLDMS - D I E M1 M2 W W W W W W -
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 19-19
Unrestricted Access Non-Confidential

VFP Instruction Execution
19.9 Resource hazards

A resource hazard exists when the pipeline required for an instruction is unavailable
because of a prior instruction. VFP11 resource stalls are possible in the following cases:

• A data transfer operation following an incomplete data transfer operation can
cause a resource stall. The MPCore processor can stall each data transfer because
of unavailable data caused by memory latency or a cache miss, increasing the
latency of the data transfer instruction and stalling any following data transfer
instructions.

• An arithmetic operation following either a short vector arithmetic operation or a
double-precision multiply or multiply and accumulate operation can cause a
resource stall. The latency for a double-precision multiply or multiply and
accumulate operation is two cycles, causing a single-cycle stall for an arithmetic
operation that immediately follows.

• A single-precision divide or square root operation stalls subsequent DS
operations for 15 cycles. A double-precision divide or square root operation stalls
subsequent DS operations for 29 cycles.

• A short vector divide or square root operation requires the FMAC pipeline for the
first cycle of each iteration and stalls any following CDP operation. The following
CDP operation stalls until the final iteration of the short vector divide or square
root operation completes the Execute 1 stage.

The LS pipeline is separate from the FMAC and DS pipelines. No resource hazards exist
between data transfer instructions and arithmetic instructions.

The sections that follow give examples of resource hazards:

• Load multiple-load-CDP resource hazard example

• Load multiple-short vector CDP resource hazard example on page 19-21

• Short vector CDP-CDP resource hazard example on page 19-22.

19.9.1 Load multiple-load-CDP resource hazard example

In Example 19-10, the FLDM is executing two transfers to the VFP11 coprocessor. The
FLDS is stalled behind the FLDM until the FLDM enters the final Execute cycle. The FADDS
is stalled for one cycle until the FLDS begins execution.

Example 19-10 FLDM-FLDS-FADDS resource hazard

FLDM [R2], {S8-S10}
FLDS [R4], S16
19-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Instruction Execution
FADDS S2, S3, S4

Table 19-12 shows the pipeline stages for Example 19-10 on page 19-20.

19.9.2 Load multiple-short vector CDP resource hazard example

In Example 19-11, no resource hazard exists for the FMULS because of the FLDM in the
prior cycle. The FMULS is issued to the VFP11 coprocessor in the cycle following the
issue of the FLDM, and executes in parallel with it.

The LEN field contains, b011, selecting a vector length of four iterations. The STRIDE
field contains b00, selecting a vector stride of one.

Example 19-11 FLDM-short vector FMULS resource hazard

FLDM [R2], {S8-S10}
FMULS S16, S24, S4

Table 19-13 shows the pipeline stages for Example 19-11.

Table 19-12 FLDM-FLDS-FADDS resource hazard

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13

FLDM D I E M1 M2 W W - -

FLDS - D D I E M1 M2 W -

FADDS - - - D I E1 E2 E3 E4 E5 E6 E7 W

Table 19-13 FLDM-short vector FMULS resource hazard

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14

FLDM D I E M1 M2 W W - -

FMULS - D I E1 E1 E1 E1 E2 E3 E4 E5 E6 E7 W
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 19-21
Unrestricted Access Non-Confidential

VFP Instruction Execution
19.9.3 Short vector CDP-CDP resource hazard example

In Example 19-12, a short vector divide is followed by a FADDS instruction. The short
vector divide has b001 in the LEN field, selecting a vector length of two iterations. It
requires the Execute 1 stage of the FMAC pipeline for the first cycle of each iteration
of the divide, resulting in a stall of the FADDS until the final iteration of the divide
completes the first Execute 1 cycle. The divide iterates for 14 cycles in the Execute 1
and Execute 2 stages of the DS pipeline, shown in Table 19-14 as E1. The first and
shared Execute 1 cycle for each divide iteration is designated as E1’.

Example 19-12 Short vector FDIVS-FADDS resource hazard

FDIVS S8, S10, S12
FADDS S0, S0, S1

Table 19-14 shows the pipeline stages for Example 19-12.

Table 19-14 Short vector FDIVS-FADDS resource hazard

Instruction cycle number

Instruction 1 2 3 4 . . . 16 17 18 19 20 21 22 23 24 25 26 . . . 30 31 32 33 34 35 36

FDIVS D I E1’ E1 . . . E1 E1 E1’ E1 E1 E1 E1 E1 E1 E1 E1 . . . E1 E1 E1 E2 E3 E4 W

FADDS - - D D . . . D D I E1 E2 E3 E4 E5 E6 E7 W . . . - - - - - - -
19-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Instruction Execution
19.10 Parallel execution

The VFP11 coprocessor is capable of execution in each of the three pipelines
independently of the others and without blocking issue or writeback from any pipeline.
Separate LS, FMAC, and DS pipelines enable parallel operation of CDP and data
transfer instructions. Scheduling instructions to take advantage of the parallelism that
occurs when multiple instructions execute in the VFP11 pipelines can result in a
significant improvement in program execution time.

A data transfer operation can begin execution if:

• no data hazards exist with any currently executing operations

• the LS pipeline is not currently stalled by the MPCore processor or busy with a
data transfer multiple.

A CDP can be issued to the FMAC pipeline if:

• no data hazards exist with any currently executing operations

• the FMAC pipeline is available (no short vector CDP is executing and no
double-precision multiply is in the first cycle of the multiply operation)

• no short vector operation with unissued iterations is currently executing in either
the FMAC or DS pipeline.

A divide or square root instruction can be issued to the DS pipeline if:

• no data hazards exist with any currently executing operations

• the DS pipeline is available (no current divide or square root is executing in the
DS pipeline E1 stage)

• no short vector operation with unissued iterations is executing in the FMAC
pipeline.

Example 19-13 on page 19-24 shows a case of the VFP11 coprocessor executing
instructions in parallel in each of the three pipelines:

• a load multiple in the L/S pipeline

• a divide in the DS pipeline

• a short vector add in the FMAC pipeline.

In this example, the LEN field contains b011, selecting a vector length of four iterations,
and the STRIDE field contains b00, for a vector stride of one.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 19-23
Unrestricted Access Non-Confidential

VFP Instruction Execution
Example 19-13 Parallel execution in all three pipelines

FLDM [R4], {S4-S13}
FDIVSS0, S1, S2
FADDS S16, S20, S24

Table 19-15 shows the pipeline progression of the three instructions.

In Example 19-13, no data hazards exist between any of the three instructions. The load
multiple is able to begin execution immediately, and data is transferred to the register
file beginning in cycle 6. Because the destination is in bank 0, the FDIVS is a scalar
operation and requires one cycle in the FMAC pipeline E1 stage. If the FDIVS were a
short vector operation, the FADDS can not begin execution until the last FDIVS iteration
passed the FMAC E1 pipeline stage. The FADDS is a short vector operation and requires
the FMAC pipeline E1 stage for cycles 5-8.

Note
 E1’ is the first cycle in E1 and is in both FMAC and DS blocks. Subsequent E1 cycles
represent the iteration cycles and occupy both E1 and E2 stages in the DS block.

Table 19-15 Parallel execution in all three pipelines

Instruction cycle number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FLDM D I E M1 M2 W W W W W - - - - -

FDIVS - D I E1’ E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1

FADDS - - D I E1 E1 E1 E1 E2 E3 E4 E5 E6 E7 W
19-24 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Instruction Execution
19.11 Execution timing

Complex instruction dependencies and memory system interactions make it impossible
to describe briefly the exact cycle timing of all instructions in all circumstances. The
timing that Table 19-16 describes is accurate in most cases. For precise timing, you
must use a cycle-accurate model of your MPCore processor.

In Table 19-16, throughput is defined as the cycle after issue where another instruction
can begin execution. Instruction latency is the number of cycles after the data is
available for another operation. Forwarding reduces the latency by one cycle for
operations that depend on floating-point data. Table 19-16 shows the throughput and
latency for all VFP11 instructions.

Table 19-16 Throughput and latency cycle counts for VFP11 instructions

Instructions

Single-precision Double-precision

Throughput Latency Throughput Latency

FABS, FNEG, FCVT, FCPY 1 4 1 4

FCMP, FCMPE, FCMPZ, FCMPEZ 1 4 1 4

FSITO, FUITO, FTOSI, FTOUI, FTOUIZ, FTOSIZ 1 8 1 8

FADD, FSUB 1 8 1 8

FMUL, FNMUL 1 8 2 9

FMAC, FNMAC, FMSC, FNMSC 1 8 2 9

FDIV, FSQRT 15 19 29 33

FLDa 1 4 1 4

FSTa 1a System-
dependent

1 System-
dependent

FLDMa Xb Xb + 3 Xb Xb + 3

FSTMa Xb System-
dependent

Xb System-
dependent

FMSTAT 1 2 - -

FMSR/FMSRRc 1 4 - -

FMDHR/FMDHC/FMDRRc - - 1 4

FMRS/FMRRSc 1 2 - -
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 19-25
Unrestricted Access Non-Confidential

VFP Instruction Execution
FMRDH/FMRDL/FMRRDc - - 1 2

FMXRd 1 4 - -

FMRXd 1 2 - -

a. The cycle count for a load instruction is based on load data that is cached and available to the MPCore processor from the
cache. The cycle count for a store instruction is based on store data that is written to the cache and/or write buffer immediately.
When the data is not cached or the write buffer is unavailable, the number of cycles also depends on the memory subsystem.

b. The number of cycles represented by X is (N/2) if N is even or (N/2 + 1) if N is odd.
c. FMDRR and FMRRD transfer one double-precision data per transfer. FMSRR and FMRRS transfer two single-precision data per transfer.
d. FMXR and FMRX are serializing instructions. The latency depends on the register transferred and the current activity in the VFP11

coprocessor when the instruction is issued.

Table 19-16 Throughput and latency cycle counts for VFP11 instructions (continued)

Instructions

Single-precision Double-precision

Throughput Latency Throughput Latency
19-26 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Chapter 20
VFP Exception Handling

This chapter describes VFP11 exception processing. It contains the following sections:

• About exception processing on page 20-2

• Bounced instructions on page 20-3

• Support code on page 20-5

• Exception processing on page 20-8

• Input Subnormal exception on page 20-14

• Invalid Operation exception on page 20-15

• Division by Zero exception on page 20-18

• Overflow exception on page 20-19

• Underflow exception on page 20-21

• Inexact exception on page 20-23

• Input exceptions on page 20-24

• Arithmetic exceptions on page 20-25.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-1
Unrestricted Access Non-Confidential

VFP Exception Handling
20.1 About exception processing

The VFP11 coprocessor handles exceptions, other than inexact exceptions, imprecisely
with respect to both the state of the MPCore processor and the state of the VFP11
coprocessor. It detects an exceptional instruction after the instruction passes the point
for exception handling in the MPCore processor. It then enters the exceptional state and
signals the presence of an exception by refusing to accept a subsequent VFP instruction.
The instruction that triggers exception handling bounces to the MPCore processor. The
bounced instruction is not necessarily the instruction immediately following the
exceptional instruction. Depending on sequence of instructions that follow, the bounce
can occur several instructions later.

The VFP11 coprocessor can generate exceptions only on arithmetic operations. Data
transfer operations between the MPCore processor and the VFP11 coprocessor, and
instructions that copy data between VFP11 registers, FCPY, FABS, and FNEG, cannot
produce exceptions.

In full-compliance mode the VFP11 hardware and support code together process
exceptions according to the IEEE 754 standard. VFP11 exception processing includes
calling user trap handlers with intermediate operands specified by the IEEE 754
standard. In RunFast mode, the VFP11 coprocessor generates the default, or trap
disabled, value when an overflow, invalid operation, division by zero, or inexact
condition occurs. RunFast mode does not provide for user trap handlers.

For descriptions of each of the exception flags and their bounce characteristics, see the
sections Input Subnormal exception on page 20-14 to Arithmetic exceptions on
page 20-25.
20-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
20.2 Bounced instructions

Normally, the VFP11 hardware executes floating-point instructions completely in
hardware. However, the VFP11 coprocessor can, under certain circumstances, refuse to
accept a floating-point instruction, causing the ARM Undefined Instruction exception.
This is known as bouncing the instruction.

There are three reasons for bouncing an instruction:

• a prior instruction generates a potential or actual floating-point exception that
cannot be properly handled by the VFP11 coprocessor, such as a potential
underflow when the VFP11 coprocessor is not in flush-to-zero mode

• a prior instruction generates a potential or actual floating-point exception when
the corresponding exception enable bit is set in the FPSCR, such as a square root
of a negative value when the IOE bit, FPSCR[8], is set

• the current instruction is Undefined.

When a floating-point exception is detected, the VFP11 hardware sets the EX flag,
FPEXC[31], and loads the FPINST register with a copy of the exceptional instruction.
The VFP11 coprocessor is now in the exceptional state. The instruction that bounces as
a result of the exceptional state is referred to as the trigger instruction.

See Exception processing on page 20-8.

20.2.1 Potential or actual exception that the VFP11 coprocessor cannot handle

Three exceptional conditions cannot be handled by the VFP11 hardware:

• an operation that might underflow when the VFP11 coprocessor is not in
flush-to-zero mode

• an operation involving a subnormal operand when the VFP11 coprocessor is not
in flush-to-zero mode

• an operation involving a NaN when the VFP11 coprocessor is not in default NaN
mode.

For these conditions the VFP11 coprocessor relies on support code to process the
operation. See Underflow exception on page 20-21 and Input exceptions on page 20-24.

20.2.2 Potential or actual exception with the exception enable bit set

The VFP11 coprocessor evaluates the instruction for exceptions in the E1 and E2
pipeline stages. No means exist to signal exceptions to the MPCore processor after the
E2 stage. The VFP11 coprocessor enters the exceptional state when it detects that an
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-3
Unrestricted Access Non-Confidential

VFP Exception Handling
instruction has a potential to generate a floating-point exception while the
corresponding exception enable bit is set. Such an instruction is called a potentially
exceptional instruction.

An example of an instruction that generates an actual exception is a division of a normal
value by zero when the Division by Zero exception enable bit, FPSCR[9], is set. This
mechanism provides support for the IEEE 754 trap mechanism and provides
programmers a means of halting execution on certain conditions.

As an example of an instruction that generates a potential exception, if the overflow
exception enable bit, FPSCR[10], is set, and the initial exponent for a multiply operation
is the maximum exponent for a normal value in the destination precision, the VFP11
coprocessor bounces the instruction pessimistically. Because the impact on the
exponent because of mantissa overflow and rounding is not known in the E1 or E2
stages of the FMAC pipeline, the decision to bounce must be made based on the
potential for an exception. Support code performs the multiply operation and
determines the exception status. If the multiply operation results in an overflow, the
processor jumps to the Overflow user trap handler. If the operation does not result in an
overflow, it writes the computed result to the destination, sets the appropriate flags in
the FPSCR, and returns to user code.
20-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
20.3 Support code

The VFP11 coprocessor provides floating-point functionality through a combination of
hardware and software support.

When an instruction bounces, software installed on the ARM Undefined Instruction
vector determines why the VFP11 coprocessor rejected the instruction and takes
appropriate remedial action. This software is called the VFP support code. The support
code has two components:

• a library of routines that perform floating-point arithmetic functions

• a set of exception handlers that process exceptional conditions.

See Application Note 98, VFP Support Code for details of support code. Support code
is provided with the RealView Compilation Tools, or for the ARM Developer Suite as
an add-on downloadable from the ARM web site.

The remedial action is performed as follows:

1. The support code starts by reading the FPEXC register. If the EX flag,
FPEXC[31], is set, a potential exception is present. If not, an illegal instruction is
detected. See Illegal instructions on page 20-6.

The contents of the FPEXC register must be retained throughout exception
processing. Any VFP11 coprocessor activity might change FPEXC register bits
from their state at the time of the exception.

2. The support code writes to the FPEXC register to clear the EX flag. Failure to do
this can result in an infinite loop of exceptions when the support code next
accesses the VFP11 hardware.

3. The support code reads the FPSCR to determine if IXE is set or not set. If IXE,
FPSCR[12], is set, an inexact exception has occurred, that takes priority over
other exceptions and is precise. Other exceptions are imprecise.

4. The support code reads either the FPINST register, or the instruction pointed to
by r14-4, depending on whether the exception is precise or not, to determine the
instruction that caused the potential exception.

5. The support code decodes the instruction in the FPINST register, reads its
operands, including implicit information such as the rounding mode and vector
length in the FPSCR register, executes the operation, and determines whether a
floating-point exception occurred.

6. If no floating-point exception occurred, the support code writes the correct result
of the operation and sets the appropriate flags in the FPSCR register.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-5
Unrestricted Access Non-Confidential

VFP Exception Handling
If one or more floating-point exceptions occurred, but all of them were disabled,
the support code determines the correct result of the instruction, writes it to the
destination register, and sets the corresponding flags in the FPSCR register.

If one or more floating-point exceptions occurred, and at least one of them was
enabled, the support code computes the intermediate result specified by the IEEE
754 standard, if required, and calls the user trap handler for that exception. The
user trap handler can provide a result for the instruction and continue program
execution, generate a signal or message to the operating system or the user, or
terminate the program.

7. If the potentially exceptional instruction specified a short vector operation, the
hardware does not execute any vector iterations after the one that encountered the
potentially exceptional condition. The support code repeats steps 4 and 5 for any
such iterations. See Exception processing for CDP short vector instructions on
page 20-9 for more details.

8. If the FP2V flag, FPEXC[28], is set and IXE, FPSCR[12], is clear, the FPINST2
register contains another VFP instruction that was issued between the potentially
exceptional instruction and the trigger instruction. This instruction is executed by
the support code in the same manner as the instruction in the FPINST register. The
FP2V flag must be cleared before returning to user code. See Instruction
registers, FPINST and FPINST2 on page 18-25 for more on FPINST2.

9. The support code finishes processing the potentially exceptional instruction and
returns to the program containing the trigger instruction. The MPCore processor
refetches the trigger instruction from memory and reissues it to the VFP11
coprocessor. Unless another bounce occurs, the trigger instruction is executed.
Returning in this fashion is called retrying the trigger instruction.

The support code can be written to use the VFP11 hardware for its internal calculations,
provided that:

• recursive bounces are prevented or handled correctly

• care is taken to restore the state of the original program before returning to it.

Restoring the state of the original program can be difficult if the original program was
executing in FIQ mode or in Undefined instruction mode. It is legitimate for support
code to disable or restrict the use of VFP11 instructions in these two processor modes.

20.3.1 Illegal instructions

If there is not a potential floating-point exception from an earlier instruction, the current
instruction can still be bounced if it is architecturally Undefined in some way. When this
happens, the EX flag, FPEXC[31], is not set. The instruction that caused the bounce is
contained in the memory word pointed to by r14_undef – 4.
20-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
It is possible that both conditions for an instruction to be bounced occur simultaneously.
This happens when an illegal instruction is encountered and there is also a potential
floating-point exception from an earlier instruction. When this happens, the EX flag is
set, and the support code processes the potential exception in the earlier instruction. If
and when it returns, it causes the illegal instruction to be retried and the sequence of
events described in the paragraph above occurs.

The following instruction types are architecturally Undefined. See the ARM
Architecture Reference Manual:

• instructions with opcode bit combinations defined as reserved in the architecture
specification

• load or store instructions with Undefined P, W, and U bit combinations

• FMRX/FMXR instructions to or from a control register that is not defined

• User mode FMRX/FMXR instructions to or from a control register that can be accessed
only in a privileged mode

• double precision operations with odd register numbers.

Certain instruction types do not have architecturally-defined behavior and are
Unpredictable:

• load or store multiple instructions with a transfer count of zero or greater than 32,
and any combination of initial register and transfer count such that an attempt is
made to transfer a register beyond S31 for single-precision transfers, or D15 for
double-precision transfers

• a short vector instruction with a combination of precision, length, and stride that
causes the vector to wrap around and make more than one access to the same
register

• a short vector instruction with overlapping source and destination register
addresses that are not exactly the same.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-7
Unrestricted Access Non-Confidential

VFP Exception Handling
20.4 Exception processing

The MPCore/VFP11 interface specifies that an exceptional instruction that bounces to
support code must signal on a subsequent coprocessor instruction. This is known as
imprecise exception handling. It means that when the exception is processed, the VFP11
and MPCore user states might be different from their states when the exceptional
instruction executed. Parallel execution of VFP11 CDP instructions and data transfer
instructions enables the VFP11 and MPCore register files and memory to be modified
outside of the program order.

20.4.1 Determination of the trigger instruction

The issue timing of VFP11 instructions affects the determination of the trigger
instruction. The last iteration of a short vector CDP can be followed in the next cycle by
a second CDP instruction. If there is no hazard, the VFP11 coprocessor accepts the
second CDP instruction before the exception status of the last iteration of the short vector
CDP is known. The second CDP instruction is said to be in the pretrigger slot and is
retained in the FPINST2 register for the support code.

The following rules determine which instruction is the trigger instruction:

• The first nonserializing instruction after the exceptional condition has been
detected is the trigger instruction.

• An instruction that accesses the FPSCR register in any processor mode is a trigger
instruction.

• An instruction that accesses the FPEXC, FPINST, or FPINST2 register in a
privileged mode is not a trigger instruction.

• An instruction that accesses the FPSID register in any mode is not a trigger
instruction.

• A data processing instruction that reaches the LS pipeline Execute stage or a CDP
instruction that reaches the FMAC or DS pipeline E1 stage is not the trigger
instruction. There can be several of these if the exceptional instruction is a
sufficiently long short vector instruction, and the exception is detected on a later
iteration.
20-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
20.4.2 Exception processing for CDP scalar instructions

When the VFP11 coprocessor detects an exceptional scalar CDP instruction, it loads the
FPINST register with the instruction word for the exceptional instruction and flags the
condition in the FPEXC register. It blocks the exceptional instruction from further
execution and completes any instructions currently executing in the FMAC and DS
pipelines.

It then examines the pipeline for a trigger instruction:

• If there is a VFP CDP instruction or a load or store instruction in the VFP11 Issue
stage, it is the trigger instruction and is bounced in the cycle after the exception is
detected.

• If there is no VFP instruction in the VFP11 Issue stage, the VFP11 coprocessor
waits until one is issued. The next VFP instruction is the trigger instruction and is
bounced.

When the MPCore processor returns from exception processing, it retries the trigger
instruction.

20.4.3 Exception processing for CDP short vector instructions

For short vector instructions, any iteration might be exceptional. If an exceptional
condition is detected for a vector iteration, the vector iterations issued before the
exceptional iteration are permitted to complete and retire.

When a short vector iteration is found to be potentially exceptional, the following
operations occur:

1. The EX flag, FPEXC[31], is set.

2. The source and destination register addresses are modified in the instruction word
to point to the source and destination registers of the potentially exceptional
iteration.

3. The FPINST register is loaded with the operation instruction word.

4. The VECITR field, FPEXC[10:8], is written with the number of iterations
remaining after the potentially exceptional iteration.

5. The exceptional condition flags are set in the FPEXC.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-9
Unrestricted Access Non-Confidential

VFP Exception Handling
20.4.4 Examples of exception detection for vector instructions

In Example 20-1, the FMULD instruction is a short vector operation with b011 in the LEN
field for a length of four iterations and b00 in the STRIDE field for a vector stride of
one. A potential Underflow exception is detected on the third iteration.

Example 20-1 Exceptional short vector FMULD followed by load/store instructions

FMULD D8, D12, D8 ; Short vector double-precision multiply of length 4
FLDD D0, [R5] ; Load of 1 double-precision register
FSTMS R3, {S2-S9} ; Store multiple of 8 single-precision registers
FLDS S8, [R9] ; Load of 1 single-precision register

A double-precision multiply requires two cycles in the Execute 2 stage. The exception
on the third iteration is detected in cycle 8. Before the FMULD exception is detected, the
FLDD enters the Decode stage in cycle 2, and the FSTMS enters the Decode stage in cycle 3.
The FLDD and the FSTMS complete execution and retire. The FLDS stalls in the Decode
stage because of a resource conflict with the FSTMS and is the trigger instruction. It is
bounced in cycle 9 and can be retried after exception processing. FPINST2 is invalid, and
the FP2V flag, FPEXC[28], is not set.

Table 20-1 shows the pipeline stages for Example 20-1.

After exception processing begins, the FPEXC register fields contain the following:

EX 1 The VFP11 coprocessor is in the exceptional state.
EN 1
FP2V 0 FPINST2 does not contain a valid instruction.
VECITR 000 One iteration remains after the exceptional iteration.
INV 0
UFC 1 Exception detected is a potential underflow.
OFC 0

Table 20-1 Exceptional short vector FMULD followed by load/store instructions

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FMULD D8, D12, D8 D I E1 E2 E1 E2 E1 E2 - - - - - - - -

FLDD D0, [R5] - D I E M1 M2 W - - - - - - - - -

FSTMS R3, {S2-S9} - - D I E M1 M2 W W W W - - - - -

FLDS S8, [R9] - - - D D D D I * - - - - - - -
20-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
IOC 0

The FPINST register contains the FMULD instruction with the following fields modified
to reflect the register address of the third iteration.

Fd/D 1010/0 Destination of the third exceptional iteration is D10.
Fm/M 1010/0 Fm source of the third exceptional iteration is D10.
Fn/N 1110/0 Fn source of the third exceptional iteration is D14.

The FPINST2 register contains invalid data.

In Example 20-2, the first FADDS is a short vector operation with b001 in the LEN field
for a vector length of two iterations and b00 in the STRIDE field for a vector stride of
one. A potential Invalid Operation exception is detected in the second iteration. The
second FADDS progresses to the Execute 1 stage and is captured in the FPINST2 register
with the condition field changed to AL, the FP2V flag set, and is not the trigger
instruction. The FMULS is the trigger instruction and bounces in cycle 6. It can be retried
after exception processing.

Example 20-2 Exceptional short-vector FADDS with a FADDS in the pretrigger slot

FADDS S24, S26, S28 ; Vector single-precision add of length 2
FADDS S3, S4, S5 ; Scalar single-precision add
FMULS S12, S16, S16; Short vector single-precision multiply

Table 20-2 shows the pipeline stages for Example 20-2.

After exception processing begins, the FPEXC register fields contains the following:

EX 1 The VFP11 coprocessor is in the exceptional state.
EN 1
FP2V 1 FPINST2 contains a valid instruction.
VECITR 111 No iterations remaining after exceptional iteration.
INV 0

Table 20-2 Exceptional short vector FADDS with a FADDS in the pretrigger slot

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FADDS S24, S26, S28 D I E1 E1 E2 - - - - - - - - - - -

FADDS S3, S4, S5 - D D I E1 - - - - - - - - - - -

FMULS S12, S16, S16 - - - D I * - - - - - - - - - -
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-11
Unrestricted Access Non-Confidential

VFP Exception Handling
UFC 0
OFC 0
IOC 1 Exception detected is a potential invalid operation.

The FPINST register contains the FADDS instruction with the following fields modified
to reflect the register address of the second iteration:

Fd/D 1100/1 Destination is of the second exceptional iteration is S25.
Fn/N 1101/1 Fn source is of the second exceptional iteration is S27.
Fm/M 1110/1 Fm source is of the second exceptional iteration is S29.

The FPINST2 register contains the instruction word for the second FADDS with the
condition field changed to AL.

In Example 20-3, FADDD is a short vector instruction with b011 in the LEN field for a
vector length of four iterations and b00 in the STRIDE field for a vector stride of one.
It has a potential Overflow exception in the first iteration, detected in cycle 4. The
following FMACS is stalled in the Decode stage. The FMACS is the trigger instruction and
can be retried after exception processing. FPINST2 is invalid and the FP2V flag is not set.

Example 20-3 Exceptional short vector FADDD with an FMACS trigger instruction

FADDD D4, D4, D12 ; Short vector double-precision add of length 4
FMACS S0, S3, S2 ; Scalar single-precision mac

Table 20-3 shows the pipeline stages for Example 20-3.

After exception processing begins, the FPEXC register fields contain the following:

EX 1 The VFP11 coprocessor is in the exceptional state.
EN 1
FP2V 0 FPINST2 does not contain a valid instruction.
VECITR 010 Three iterations remain.
INV 0
UFC 0
OFC 1 Exception detected is a potential overflow.

Table 20-3 Exceptional short vector FADDD with an FMACS trigger instruction

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FADDD D4, D4, D12 D I E1 E2 - - - - - - - - - - - -

FMACS S0, S3, S2 - D D I * - - - - - - - -
20-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
IOC 0

The FPINST register contains the FADDD instruction with the following fields modified
to reflect the register address of the first iteration:

Fd/D 0100/0 Destination of exceptional iteration is D4.
Fn/N 0100/0 Fn source of the first exceptional iteration is D4.
Fm/M 1100/0 Fm source of the first exceptional iteration is D12.

FPINST2 contains invalid data.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-13
Unrestricted Access Non-Confidential

VFP Exception Handling
20.5 Input Subnormal exception

The IDC flag, FPSCR[7], is set to 1 whenever the VFP coprocessor is in flush-to-zero
mode and a subnormal input operand is replaced by a positive zero. The behavior of the
VFP11 coprocessor with a subnormal input operand is a function of the FZ bit,
FPSCR[24]. If FZ is not set, the VFP11 coprocessor bounces on the presence of a
subnormal input. If FZ is set, the IDE bit, FPSCR[15], determines whether a bounce
occurs.

20.5.1 Exception enabled

Setting the IDE bit enables Input Subnormal exceptions. An Input Subnormal exception
sets the EX flag, FPEXC[31], the INV flag, FPEXC[7], and calls the Input Subnormal
user trap handler. The source and destination registers for the instruction are unchanged
in the VFP11 register file.

20.5.2 Exception disabled

Clearing the IDE bit disables Input Subnormal exceptions. In flush-to-zero mode, the
result of the operation, with the subnormal input replaced with a positive zero, is
completed and written to the register file. The IDC flag, FPSCR[7], is set.
20-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
20.6 Invalid Operation exception

An operation is invalid if the result cannot be represented, or if the result is not defined.

Table 20-4 shows the operand combinations that produce Invalid Operation exceptions.
In addition to the conditions in Table 20-4, any CDP instruction other than FCPY, FNEG, or
FABS causes an Invalid Operation exception if one or more of its operands is an SNaN
(see Table 18-1 on page 18-5).

20.6.1 Exception enabled

Setting the IOE bit, FPSCR[8], enables Invalid Operation exceptions.

Table 20-4 Possible Invalid Operation exceptions

Instruction Invalid Operation exceptions

FADD (+infinity) + (–infinity) or (–infinity) + (+infinity).

FSUB (+infinity) – (+infinity) or (–infinity) – (–infinity).

FCMPE/FCMPEZ Any NaN operand.

FMUL/FNMUL Zero × ±infinity or ±infinity × zero.a

FDIV Zero/zero or infinity/infinity.a

FMAC/FNMAC Any condition that can cause an Invalid Operation exception for FMUL or FADD
can cause an Invalid Operation exception for FMAC and FNMAC. The product
generated by the FMAC or FNMAC multiply operation is considered in the
detection of the Invalid Operation exception for the subsequent sum
operation.

FMSC/FNMSC Any of the conditions that can cause an Invalid Operation exception for FMUL
or FSUB can cause an Invalid Operation exception for FMSC and FNMSC. The
product generated by the FMSC or FNMSC multiply operation is considered in the
detection of the Invalid Operation exception for the subsequent difference
operation.

FSQRT Source is less than 0.

FTOUI Rounded result would lie outside the range 0 ≤ result < 232.

FTOSI Rounded result would lie outside the range –231 ≤ result < 231.

a. In flush-to-zero mode, a subnormal input is treated as a positive zero for detecting an Invalid
Operation exception.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-15
Unrestricted Access Non-Confidential

VFP Exception Handling
The VFP11 coprocessor causes a bounce to support code for all the invalid operation
conditions listed in Table 20-4 on page 20-15. Any arithmetic operation involving an
SNaN also causes a bounce to support code. The VFP11 coprocessor detects most
Invalid Operations exceptions conclusively but some are detected based on the
possibility of an invalid operation. The potentially invalid operations are:

• FTOUI with a negative input. A small negative input might round to a zero, which
is not an invalid condition.

• A float-to-integer conversion with a maximum exponent for the destination
integer and any rounding mode other than round-towards-zero. The impact of
rounding is unknown in the Execute 1 stage.

• An FMAC family operation with an infinity in the A operand and a potential product
overflow when an infinity with the sign of the product would result in an invalid
condition.

When the VFP11 coprocessor detects a potentially invalid condition, the EX flag,
FPEXC[31], and the IOC flag, FPEXC[0], are set. The IOC flag in the FPSCR register,
FPSCR[0], is not set by the hardware and must be set by the support code before calling
the Invalid Operation user trap handler.

The support code determines the exception status of all bounced instructions. If an
invalid condition exists, the Invalid Operation user trap handler is called. The source and
destination registers for the instruction are valid in the VFP11 register file.

20.6.2 Exception disabled

If the IOE bit is not set, the VFP11 coprocessor writes a default NaN into the destination
register for all operations except integer conversion operations.

Conversion of a floating-point value that is outside the range of the destination integer
is an invalid condition rather than an overflow condition. When an invalid condition
exists for a float-to-integer conversion, the VFP11 coprocessor delivers a default result
to the destination register and sets the IOC flag, FPSCR[0]. Table 20-5 on page 20-17
shows the default results for input values after rounding.

If the VFP11 coprocessor is not in default NaN mode, an arithmetic instruction with an
SNaN operand sets the IOC flag and causes a bounce to support code.

Note
 A negative input to an unsigned conversion that does not round to a true zero in the
conversion process sets the IOC flag, FPEXC[0].
20-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
Table 20-5 Default results for invalid conversion inputs

FTOUIS and FTOUID FTOSIS and FTOSID

Input value
after rounding Result

FPSCR IOC
flag set? Result

FPSCR IOC
flag set?

x ≥ 232 0xFFFFFFFF Yes 0x7FFFFFFF Yes

231 ≤ x < 232 Integer No 0x7FFFFFFF Yes

0 ≤ x < 231 Integer No Integer No

0 ≥ x ≥ –231 0x00000000 Yes Integer No

x < –231 0x00000000 Yes 0x80000000 Yes

NaN 0x00000000 Yes 0x00000000 Yes

+infinity 0xFFFFFFFF Yes 0x7FFFFFFF Yes

–infinity 0x00000000 Yes 0x80000000 Yes
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-17
Unrestricted Access Non-Confidential

VFP Exception Handling
20.7 Division by Zero exception

The Division by Zero exception is generated for a division by zero of a normal or
subnormal value. In flush-to-zero mode, a subnormal input is treated as a positive zero
for detection of a division by zero. What happens depends on whether or not the Invalid
Operation exception is enabled.

20.7.1 Exception enabled

If the DZE bit, FPSCR[9], is set, the Division by Zero user trap handler is called. The
source and destination registers for the instruction are unchanged in the VFP11 register
file.

20.7.2 Exception disabled

Clearing the DZE bit disables Division by Zero exceptions. A correctly signed infinity
is written to the destination register, and the DZC flag, FPSCR[1], is set.
20-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
20.8 Overflow exception

When the OFE bit, FPSCR[10], is set, the hardware detects overflow pessimistically
based on the preliminary calculation of the final exponent value. If the OFE bit is not
set, the hardware detects overflow conclusively.

20.8.1 Exception enabled

Setting the OFE bit enables overflow exceptions. The VFP11 coprocessor detects most
overflow conditions conclusively, but it detects some based on the possibility of
overflow. The initial computation of the result exponent might be the maximum
exponent or one less than the maximum exponent of the destination precision. Then the
possibility of overflow because of significand overflow or rounding exists, but cannot
be known in the first Execute stage. The VFP11 coprocessor bounces on such cases and
uses the support code to determine the exceptional status of the operation. If there is no
overflow, the support code writes the computed result to the destination register and
does not set the OFC flag, FPSCR[2]. If there is an overflow, the intermediate result is
written to the destination register, OFC is set, and the Overflow user trap handler is
called. The support code sets or clears the IXC flag, FPSCR[4], as appropriate.

When the VFP11 coprocessor detects a potential overflow condition, the EX flag,
FPEXC[31], and the OFC flag, FPEXC[2], are set. The OFC flag in the FPSCR register,
FPSCR[2], is not set by the hardware and must be set by the support code before calling
the user trap handler. The source and destination registers for the instruction are
unchanged in the VFP11 register file. See Arithmetic exceptions on page 20-25 for the
conditions that cause an overflow bounce.

20.8.2 Exception disabled

Clearing the OFE bit disables overflow exceptions. A correctly signed infinity or the
largest signed finite number for the destination precision is written to the destination
register as Table 20-6 shows. The OFC and IXC flags, FPSCR[2] and FPSCR[4], are
set.

Table 20-6 Rounding mode overflow results

Rounding mode Result

Round to nearest Infinity, with the sign of the intermediate result.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-19
Unrestricted Access Non-Confidential

VFP Exception Handling
Round towards zero Largest magnitude value for the destination size, with the sign of the intermediate result.

Round towards plus infinity Positive infinity if positive overflow. Largest negative value for the destination size if
negative overflow.

Round towards minus infinity Largest positive value for the destination size if positive overflow. Negative infinity if
negative overflow.

Table 20-6 Rounding mode overflow results (continued)

Rounding mode Result
20-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
20.9 Underflow exception

Underflow is detected pessimistically in non-RunFast mode. If the potential underflow
is confirmed by the support code for an operation with a floating-point result, an
underflow exception is generated. How this is confirmed depends on whether the
VFP11 coprocessor is in flush-to-zero mode.

If the FZ bit is set, all underflowing results are forced to a positive signed zero and
written to the destination register. The UFC flag is set in the FPSCR. No trap is taken.
If the Underflow exception enable bit is set, it is ignored.

If the FZ bit is not set what happens next depends on whether the Underflow exception
is enabled.

20.9.1 Exception enabled

Setting the UFE bit, FPSCR[11], enables Underflow exceptions. The VFP11
coprocessor detects most underflow conditions conclusively, but it detects some based
on the possibility of an underflow. The initial computation of the result exponent might
be below a threshold for the destination precision. In this case, the possibility of
underflow because of massive cancellation exists, but cannot be known in the first
Execute stage. The VFP11 coprocessor bounces on such cases and uses the support
code to determine the exceptional status of the operation. Underflow is confirmed if the
result of the operation after rounding is less in magnitude than the smallest normalized
number in the destination format. If there is no underflow, either catastrophic or to a
subnormal result, the support code writes the computed result to the destination register
and returns without setting the UFC flag, FPSCR[3]. If there is underflow, regardless of
any accuracy loss, the intermediate result is written to the destination register, UFC is
set, and the Underflow user trap handler is called. The support code sets or clears the
IXC flag, FPSCR[4], as appropriate.

When the VFP11 coprocessor detects a potential underflow condition, the EX flag,
FPEXC[31], and the UFC flag, FPEXC[3], are set. The UFC flag in the FPSCR register
is not set by the hardware and must be set by the support code before calling the user
trap handler. The source and destination registers for the instruction are valid in the
VFP11 register file. See section Arithmetic exceptions on page 20-25 for the conditions
that cause an underflow bounce.

20.9.2 Exception disabled

Clearing the UFE bit, FPSCR[11], disables Underflow exceptions. When the FZ bit,
FPSCR[24], is not set, the VFP11 coprocessor bounces on potential underflow cases in
the same fashion as described in Exception enabled. The correct result is written to the
destination register, setting the appropriate exception flags.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-21
Unrestricted Access Non-Confidential

VFP Exception Handling
When the FZ bit is set, the VFP11 coprocessor makes the determination of underflow
before rounding and flushes any result that underflows. A result that underflows returns
a positive zero to the destination register and sets the UFC flag, FPSCR[3].

Note
 The determination of an underflow condition in flush-to-zero mode is made before
rounding rather than after. This means that the VFP11 coprocessor might not return the
minimum normal value when rounding would have produced it. Instead, it flushes to
zero an intermediate value with the minimum exponent for the destination precision, a
fraction of all ones, and a round increment. If the intermediate value was the minimum
normal value before the underflow condition test is made, it is not flushed to zero.
20-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
20.10 Inexact exception

The result of an arithmetic operation on two floating-point values can have more
significant bits than the destination register can contain. When this happens, the result
is rounded to a value that the destination register can hold and is said to be inexact.

The Inexact exception occurs whenever:

• a result is not equal to the computed result before rounding

• an untrapped Overflow exception occurs

• an untrapped Underflow exception occurs, and there is loss of accuracy.

Note
 The Inexact exception occurs frequently in normal floating-point calculations and does
not indicate a significant numerical error except in some specialized applications.
Enabling the Inexact exception by setting the IXE bit, FPSCR[12], can significantly
reduce the performance of the VFP11 coprocessor.

The VFP11 coprocessor handles the Inexact exception differently from the other
floating-point exceptions. It has no mechanism for reporting inexact results to the
software, but can handle the exception without software intervention as long as the IXE
bit, FPSCR[12], is cleared, disabling Inexact exceptions.

20.10.1 Exception enabled

If the IXE bit, FPSCR[12], is set, all CDP instructions are bounced to the support code
without any attempt to perform the calculation. The support code is then responsible for
performing the calculation, determining if any exceptions have taken place, and
handling them appropriately. If the support code detects an Inexact exception, it calls
the Inexact user trap handler.

Note
 • The Inexact exception takes priority over all other exceptions.

• The Inexact exception is taken precisely, unlike other exceptions. This means that
when a CDP is bounced, because it is potentially imprecise, the instruction can be
found at the address pointed to by r14-4 and is not stored in the FPINST register.
There is never a pre-trigger instruction in the FPINST2 register.

20.10.2 Exception disabled

If the IXE bit, FPSCR[12], is not set, the VFP11 coprocessor writes the result to the
destination register and sets the IXC flag, FPSCR[4].
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-23
Unrestricted Access Non-Confidential

VFP Exception Handling
20.11 Input exceptions

The VFP11 hardware processes most input operands without support code assistance.
However, the hardware is incapable of processing some operands and bounces to
support code to process the instruction. An arithmetic operation bounces with an Input
exception when it has either of the following:

• a NaN operand or operands, and default NaN mode is not enabled

• a subnormal operand or operands, and flush-to-zero mode is not enabled.

Note
 In default NaN mode, an SNaN input to an arithmetic operation causes an Invalid
Operation exception. When the IOE bit, FPSCR[8], is set, the instruction bounces to the
Invalid Operation user trap handler. When the IOE bit is clear, and the VFP11
coprocessor is not in default NaN mode, the instruction bounces to the support code.
20-24 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
20.12 Arithmetic exceptions

This section describes the conditions under which the VFP11 coprocessor bounces an
arithmetic instruction based on the potential for the exception. It is the task of the
support code to determine the actual exception status of the instruction. The support
code must return either the result and appropriate exception status bits, or the
intermediate result and a call to a user trap handler.

The following sections describe the circumstances in which arithmetic exceptions
occur:

• FADD and FSUB on page 20-26

• FCMP, FCMPZ, FCMPE, and FCMPEZ on page 20-28

• FMUL and FNMUL on page 20-28

• FMAC, FMSC, FNMAC, and FNMSC on page 20-29

• FDIV on page 20-29

• FSQRT on page 20-31

• FCPY, FABS, and FNEG on page 20-31

• FCVTDS and FCVTSD on page 20-31

• FUITO and FSITO on page 20-31

• FTOUI, FTOUIZ, FTOSI, and FTOSIZ on page 20-32.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-25
Unrestricted Access Non-Confidential

VFP Exception Handling
20.12.1 FADD and FSUB

In an addition or subtraction, the exponent is initially the larger of the two input
exponents. For clarity, we define the operation as a Like-Signed Addition (LSA) or an
Unlike-Signed Addition (USA). Table 20-7 specifies how this distinction is made. In the
table, + indicates a positive operand, and – indicates a negative operand.

Because it is possible for an LSA operation to cause the exponent to be incremented if
the significand overflows, overflow bounce ranges for an LSA are more pessimistic than
they are for a USA. The LSA ranges are made slightly more pessimistic to incorporate
FMAC instructions (see FMAC, FMSC, FNMAC, and FNMSC on page 20-29).

Underflow bounce ranges for a USA are more pessimistic than they are for an LSA.
This is to accommodate a massive cancellation where the result exponent is smaller than
the larger operand exponent by as much as the length of the significand. The overflow
range for a USA is slightly pessimistic (it is set to the LSA overflow range) to reduce
the number of logic terms. Table 20-8 on page 20-27 shows the USA and LSA values
and conditions. The exponent values in Table 20-8 on page 20-27 are in biased format.

Table 20-7 LSA and USA determination

Instruction
Operand A
sign

Operand B
sign

Operation
type

FADD + + LSA

FADD + – USA

FADD – + USA

FADD – – LSA

FSUB + + USA

FSUB + – LSA

FSUB – + LSA

FSUB – – USA
20-26 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
Table 20-8 FADD family bounce thresholds

Initial result
exponent value

Float value

Condition when not in flush-to-zero mode

DPa SPb SP DP

>0x7FF - DP overflow - Bounce

0x7FF - DP overflow, NaN, or infinity - Bounce

0x7FE - DP overflow - Bounce

0x7FD - DP overflow - Bounce

0x7FC - DP normal - Normal

>0x47F >0xFF SP overflow Bounce Normal

0x47F 0xFF SP NaN or infinity Bounce Normal

0x47E 0xFE SP overflow Bounce Normal

0x47D 0xFD SP overflow Bounce Normal

0x47C 0xFC SP normal Normal Normal

0x3FF 0x7F e = 0 bias value Normal Normal

0x3A0 0x20 SP normal (LSA) Minimum (USA) Normal

0x39F 0x1F SP underflow (USA) Bounce (USA) or normal (LSA) Normal

0x381 0x01 SP normal (LSA) MIN (LSA) Normal

0x380 0x00 SP subnormal Bounce Normal

<0x380 <0x00 SP underflow Bounce Normal

0x040 - DP normal (USA) - Normal (LSA) or minimum (USA)

0x03F - DP underflow (USA) - Normal (LSA) or bounce (USA)

0x001 - DP normal (LSA) - Minimum (LSA) or bounce

(USA)

0x000 - DP subnormal - Bounce

<0x000 - DP underflow - Bounce

a. DP = double-precision.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-27
Unrestricted Access Non-Confidential

VFP Exception Handling
20.12.2 FCMP, FCMPZ, FCMPE, and FCMPEZ

Compare operations do not generate potential exceptions.

20.12.3 FMUL and FNMUL

Detection of a potential exception is based on the initial product exponent, which is the
sum of the multiplicand and multiplier exponents. Table 20-9 shows the result for
specific values of the initial product exponent. The exponent values in Table 20-9 are in
biased format. The exponent can be incremented by a significand overflow condition,
which is the cause for the additional bounce values near the real overflow threshold. The
one additional value in the bounce range makes the FMUL and FNMUL overflow detection
ranges identical to those in Table 20-8 on page 20-27.

b. SP = single-precision.

Table 20-9 FMUL family bounce thresholds

Initial product
exponent value

Float value

Condition in full-compliance mode

DPa SPb SP DP

>0x7FF - DP overflow - Bounce

0x7FF - DP NaN or infinity - Bounce

0x7FE - DP maximum normal - Bounce

0x7FD - DP normal - Bounce

0x7FC - DP normal - Normal

>0x47F >0xFF SP overflow Bounce Normal

0x47F 0xFF SP NaN or infinity Bounce Normal

0x47E 0xFE SP maximum normal Bounce Normal

0x47D 0xFD SP normal Bounce Normal

0x47C 0xFC SP normal Normal Normal

0x3FF 0x7F e = 0 bias value Normal Normal

0x381 0x01 SP normal Normal Normal

0x380 0x00 SP subnormal Bounce Normal
20-28 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
20.12.4 FMAC, FMSC, FNMAC, and FNMSC

The FMAC family of operations adds to the potential overflow range by generating
significand values from zero up to but not including four. In this case it is possible for
the final exponent to require incrementing by two to normalize the significand.

The bounce thresholds for the FADD family in Table 20-8 on page 20-27 and for the FMUL
family in Table 20-9 on page 20-28 incorporate this additional factor. Those ranges are
used to detect potential exceptions for the FMAC family.

20.12.5 FDIV

The thresholds for divide are simple and based only on the difference of the exponents
of the dividend and the divisor. It is not possible in a divide operation for the significand
to overflow and cause an increment of the exponent. However, it is possible for the
significand to require a single bit left shift and the exponent to be decremented for
normalization. To reduce logic complexity, the overflow ranges are the same as those of
the LSA operations in FADD and FSUB on page 20-26. The underflow ranges include

<0x380 <0x00 SP underflow Bounce Normal

0x001 - DP normal - Normal

0x000 - DP subnormal - Bounce

<0x000 - DP underflow - Bounce

a. DP = double-precision.
b. SP = single-precision.

Table 20-9 FMUL family bounce thresholds (continued)

Initial product
exponent value

Float value

Condition in full-compliance mode

DPa SPb SP DP
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-29
Unrestricted Access Non-Confidential

VFP Exception Handling
the minimum normal exponent, 0x01 for single-precision and 0x001 for
double-precision. Table 20-10 shows the FDIV bounce thresholds. The exponent values
shown in Table 20-10 are in biased format.

Table 20-10 FDIV bounce thresholds

Initial quotient
exponent value

Float value

Condition in full-compliance mode

DPa

a. DP = double-precision.

SPb

b. SP = single-precision.

SP DP

>0x7FF - DP overflow - Bounce

0x7FF - DP NaN or infinity - Bounce

0x7FE - DP maximum normal - Bounce

0x7FD - DP normal - Bounce

0x7FC - DP normal - Normal

>0x47F >0xFF SP overflow Bounce Normal

0x47F 0xFF SP NaN or infinity Bounce Normal

0x47E 0xFE SP maximum normal Bounce Normal

0x47D 0xFD SP normal Bounce Normal

0x47C 0xFC SP normal Normal Normal

0x3FF 0x7F e = 0 bias value Normal Normal

0x382 0x02 SP normal Normal Normal

0x381 0x01 SP normal Bounce Normal

0x380 0x00 SP subnormal Bounce Normal

<0x380 <0x00 SP underflow Bounce Normal

0x002 - DP normal - Normal

0x001 - DP normal - Bounce

0x000 - DP subnormal - Bounce

<0x000 - DP underflow - Bounce
20-30 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
20.12.6 FSQRT

It is not possible for FSQRT to overflow or underflow.

20.12.7 FCPY, FABS, and FNEG

It is not possible for FCPY, FABS, or FNEG to bounce for any operand.

20.12.8 FCVTDS and FCVTSD

Only the FCVTSD operation is capable of overflow or underflow. To reduce logic
complexity, the overflow ranges are the same as the LSA ranges. Table 20-11 shows the
FCVTSD bounce conditions. The exponent values shown in Table 20-11 are in biased
format.

20.12.9 FUITO and FSITO

It is not possible to generate overflow or underflow in an integer-to-float conversion.

Table 20-11 FCVTSD bounce thresholds

Double-precision operand
exponent value Float value FCVTSD condition in full-compliance mode

>0x47F SPa overflow Bounce

0x47F SP NaN or infinity Bounce

0x47E SP maximum normal Bounce

0x47D SP normal Bounce

0x47C SP normal Normal

0x3FF e = 0 bias value Normal

0x381 SP normal Normal

0x380 SP subnormal Bounce

<0x380 SP underflow Bounce

a. SP = single-precision.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-31
Unrestricted Access Non-Confidential

VFP Exception Handling
20.12.10FTOUI, FTOUIZ, FTOSI, and FTOSIZ

Float-to-integer conversions generate Invalid Operation exceptions rather than
Overflow or Underflow exceptions. To support signed conversions with
round-towards-zero rounding in the maximum range possible for C, C++, and Java
compiled code, the thresholds for pessimistic bouncing are different for the various
rounding modes.

Table 20-12 on page 20-33 and Table 20-13 on page 20-34 use the following notation:

In the VFP Response column, the response notations are:

all These input values are bounced for all rounding modes.

S These input values are bounced for signed conversions in all rounding
modes.

SnZ These input values are bounced for signed conversions in all rounding
modes except round-towards-zero.

U These input values are bounced for unsigned conversions in all rounding
modes.

UnZ These input values are bounced for unsigned conversions in all rounding
modes except round-towards-zero.

In the Unsigned results and Signed results columns, the rounding mode notations are:

N Round-to-nearest mode.

P Round-towards-plus-infinity mode.

M Round-towards-minus infinity mode.

Z Round-towards-zero mode.

Table 20-12 on page 20-33 shows the single-precision float-to-integer bounce range
and the results returned for exceptional conditions. The exponent values shown in
Table 20-12 on page 20-33 are in biased format.
20-32 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
Table 20-12 Single-precision float-to-integer bounce thresholds and stored results

Floating-point
value

Integer
value

Unsigned
result Status

Signed
result Status

VFP11
response

NaN - 0x00000000 Invalid 0x00000000 Invalid Bounce all

0x7F800000 +infinity 0xFFFFFFFF Invalid 0x7FFFFFFF Invalid Bounce all

0x7F7FFFFF

to

0x4F800000

+maximum SPa

to

232

0xFFFFFFFF Invalid 0x7FFFFFFF Invalid Bounce all

0x4F7FFFFF

to

0x4F000000

232 – 28

to

231

0xFFFFFF00

to

0x80000000

Valid 0x7FFFFFFF Invalid Bounce S UnZ

0x4EFFFFFF

to

0x4E800000

231 – 27

to

230

0x7FFFFF80

to

0x40000000

Valid 0x7FFFFF80

to

0x40000000

Valid Bounce SnZ

0x4E7FFFFF

to

0x00000000

230 – 26

to

+0

0x3FFFFFC0

to

0x00000000

Valid 0x3FFFFFC0

to

0x00000000

Valid No bounce

0x80000000

to

0xCE7FFFFF

–0

to

–230 + 26

0x00000000 Invalidb 0x00000000

to

0xC0000040

Valid Bounce U

0xCE800000

to

0xCEFFFFFF

–230

to

–231 + 27)

0x00000000 Invalid 0xC0000000

to

0x80000080

Valid Bounce U

0xCF000000 –231 0x00000000 Invalid 0x80000000 Valid Bounce U SnZ

0xCF000000

to

0xFF7FFFFF

–231

to

–maximum SP

0x00000000 Invalid 0x80000000 Invalid Bounce all

0xFF800000 –infinity 0x00000000 Invalid 0x80000000 Invalid Bounce all

a. SP = single-precision.
b. A negative input value that rounds to a zero result returns zero and is not invalid.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-33
Unrestricted Access Non-Confidential

VFP Exception Handling
Table 20-13 shows the double-precision float-to-integer bounce range and the results
returned for exceptional conditions.

Table 20-13 Double-precision float-to-integer bounce thresholds and stored results

Floating-point
value

Integer
value

Unsigned
result Status

Signed
result Status

VFP11
response

NaN - 0x00000000 Invalid 0x00000000 Invalid Bounce all

0x7FF00000 00000000 +infinity 0xFFFFFFFF Invalid 0x7FFFFFFF Invalid Bounce all

0x7FEFFFFF FFFFFFFF

to

0x41F00000 00000000

+maximum DPa

to

232

0xFFFFFFFF Invalid 0x7FFFFFFF Invalid

Bounce all

0x41EFFFFF FFFFFFFF

to

0x41EFFFFF FFF00000

232 – 221

to

232 – 2–1

0xFFFFFFFF N, P

0xFFFFFFFF Z, M

Invalid

Valid 0x7FFFFFFF Invalid Bounce S UnZ

0x41EFFFFF FFEFFFFF

to

0x41EFFFFF FFE00001

232 – 2–1 – 221

to

232 – 20 + 2–21

0xFFFFFFFF P

0xFFFFFFFF N, Z, M

Invalid

Valid 0x7FFFFFFF Invalid Bounce S UnZ

0x41EFFFFF FFE00000

to

0x41E00000 00000000

232 – 20

to

231

0xFFFFFFFF

to

0x80000000

Valid 0x7FFFFFFF Invalid Bounce S UnZ

0x41DFFFFF FFFFFFFF

to

0x41DFFFFF FFE00000

231 – 222

to

231 – 2–1

0x80000000 N, P

0x7FFFFFFF Z, M

Valid

Valid

0x7FFFFFFF N, P

0x7FFFFFFF Z, M

Invalid

Valid Bounce SnZ

0x41DFFFFF FFDFFFFF

to

0x41DFFFFF FFC00001

231 – 2–1 – 2–22

to

231 – 20 + 2–22

0x80000000 P

0x7FFFFFFF N, Z, M

Valid

Valid

0x7FFFFFFF P

0x7FFFFFFF N, Z, M

Invalid

Valid

Bounce SnZ

0x41DFFFFF FFC00000

to

0x41D00000 00000000

231 – 20

to

230

0x7FFFFFFF

to

0x40000000

Valid

Valid
0x7FFFFFFF

to

0x40000000

Valid

Valid

Bounce SnZ

0x41CFFFFF FFFFFFFF

to

0x00000000 00000000

230 – 223

to

+0

0x40000000 N, P

0x3FFFFFFF Z, M

to

0x00000000

Valid

Valid

0x40000000 N, P

0x3FFFFFFF Z, M

to

0x00000000

Valid

Valid

Valid

Bounce none
20-34 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

VFP Exception Handling
0x80000000 00000000

to

0xC1CFFFFF FFFFFFFF

–0

to

–230 + 2–23

0x00000000b Invalid 0x00000000

to

0xC0000001 Z, P

0xC0000000 N, M

Valid

Valid

Valid

Bounce U

0xC1D00000 00000000

to

0xC1DFFFFF FFFFFFFF

–230

to

–231 + 2–22

0x00000000 Invalid 0xC0000000

to

0x80000001 Z, P

0x80000000 N, M

Valid

Valid

Valid

Bounce U

0xC1E00000 00000000 –231 0x00000000 Invalid 0x80000000 Valid Bounce U SnZ

0xC1E00000 00000001

to

0xC1E00000 00100000

–231 – 2–21

to

–231 – 2–1

0x00000000 Invalid 0x80000000 N, Z, P

0x80000000 M

Valid

Invalid

Bounce U SnZ

0xC1E00000 00100001

to

0xC1E00000 001FFFFF

–231 – 2–1 – 2–21

to

231 – 20 + 2–21

0x00000000 Invalid 0x80000000 Z, P

0x80000000 N, M

Valid

Invalid

Bounce U SnZ

0xC1E00000 00200000

to

0xFFEFFFFF FFFFFFFF

231 – 20

to

–maximum DP

0x00000000 Invalid 0x80000000 Invalid Bounce all

0xFFF00000 00000000 –infinity 0x00000000 Invalid 0x00000000 Invalid Bounce all

a. DP = double-precision.
b. A negative input value that rounds to a zero result returns zero and is not invalid.

Table 20-13 Double-precision float-to-integer bounce thresholds and stored results (continued)

Floating-point
value

Integer
value

Unsigned
result Status

Signed
result Status

VFP11
response
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. 20-35
Unrestricted Access Non-Confidential

VFP Exception Handling
20-36 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Appendix A
Signal Descriptions

This appendix lists and describes the MPCore signals. It contains the following
sections:

• AXI interface signals on page A-2

• Interrupt lines on page A-8

• Debug interface on page A-9

• MBIST interface on page A-10

• Power control interface on page A-11

• Miscellaneous signals on page A-13

• Scan test signals on page A-15

• ETM interface signals on page A-16

• Parity signals on page A-18.

Note
 Table A-1 on page A-2 to Table A-15 on page A-13 show output signals. These are set
to 0 on reset unless otherwise stated.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. A-1
Unrestricted Access Non-Confidential

Signal Descriptions
A.1 AXI interface signals

All the signals described in this section relate to the MPCore level of hierarchy. See the
AMBA AXI Protocol Specification for more information.

A.1.1 Master port 0

Table A-1 shows the master port 0 read address channel signals.

Table A-1 Master port 0 read address channel

Signal Input/Output Description

ARREADY0 Input Address ready.

ARVALID0 Output Address valid.

ARADDR0[31:0] Output Address.

ARLEN0[3:0] Output Burst length that gives the exact number of transfer:

b0000 = 1 data transfer

b0001 = 2 data transfers

b0010 = 3 data transfers

b0011 = 4 data transfers.

ARSIZE0[1:0] Output Burst size:

b00 = 8-bit transfer

b01 = 16-bit transfer

b10 = 32-bit transfer

b11 = 64-bit transfer.

ARBURST0[1:0] Output Burst type:

b01 = INCR incrementing burst

b10 = WRAP Wrapping burst.

ARLOCK0[1:0] Output Lock type:

b00 = normal access

b01 = exclusive access

b10 = locked access.

ARCACHE0[3:0] Output Cache type giving additional information about cacheable characteristics.
A-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Signal Descriptions
Table A-2 shows the master port 0 read channel signals.

Table A-3 shows the master port 0 write address channel signals.

ARPROT0[2:0] Output Protection type.

ARID0[3:0] Output Address ID.

ARUSER0[4:0] Output ARUSER0[4:1] Inner memory region attributes

ARUSER0[0] Memory region Shared attribute.

Table A-1 Master port 0 read address channel (continued)

Signal Input/Output Description

Table A-2 Master port 0 read channel

Signal Input/Output Description

RVALID0 Input Read valid

RLAST0 Input Read last

RDATA0[63:0] Input Read data

RRESP0[1:0] Input Read response

RID0[3:0] Input Read ID

RREADY0 Output Read ready

Table A-3 Master port 0 write address channel

Signal Input/Output Description

AWREADY0 Input Address ready.

AWVALID0 Output Address valid.

AWADDR0[31:0] Output Address.

AWLEN0[3:0] Output Burst length.

AWSIZE0[1:0] Output Burst size.

AWBURST0[1:0] Output Burst type.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. A-3
Unrestricted Access Non-Confidential

Signal Descriptions
Table A-4 shows the master port 0 write channel signals.

Table A-5 shows the master port 0 write response channel signals.

AWLOCK0[1:0] Output Lock type

b00 = normal access

b01 = exclusive access.

AWCACHE0[3:0] Output Cache type.

AWPROT0[2:0] Output Protection type.

AWID0[3:0] Output Address ID.

AWUSER0[6:0] Output AWUSER0[6] clean eviction transfer

AWUSER0[5] eviction transfer

AWUSER0[4:1] Inner memory region attributes

AWUSER0[0] memory region Shared attribute.

Table A-4 Master port 0 write channel

Signal Input/Output Description

WREADY0 Input Write ready

WVALID0 Output Write valid

WLAST0 Output Write last

WDATA0[63:0] Output Write data

WSTRB0[7:0] Output Write strobes

WID0[3:0] Output Write ID

Table A-5 Master port 0 write response channel

Signal Input/Output Description

BVALID0 Input Response valid

Table A-3 Master port 0 write address channel (continued)

Signal Input/Output Description
A-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Signal Descriptions
A.1.2 Master port 1

Table A-6 shows the master port 1 read address channel signals.

BRESP0[1:0] Input Write response

BID0[3:0] Input Response ID

BREADY0 Output Response ready

Table A-5 Master port 0 write response channel (continued)

Signal Input/Output Description

Table A-6 Master port 1 read address channel

Signal Input/Output Description

ARREADY1 Input Address ready.

ARVALID1 Output Address valid.

ARADDR1[31:0] Output Address.

ARLEN1[3:0] Output Burst length.

ARSIZE1[1:0] Output Burst size.

ARBURST1[1:0] Output Burst type.

ARLOCK1[1:0] Output Lock type

b00 = normal access

b01 = exclusive access

b10 = locked access.

ARCACHE1[3:0] Output Cache type.

ARPROT1[2:0] Output Protection type.

ARID1[3:0] Output Address ID.

ARUSER1[4:0] Output ARUSER1[4:1] Inner memory region attributes

ARUSER1[0] memory region Shared attribute.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. A-5
Unrestricted Access Non-Confidential

Signal Descriptions
Table A-7 shows the master port 1 read channel signals.

Table A-8 shows the master port 1 write address channel signals.

Table A-7 Master port 1 read channel

Signal Input/Output Description

RVALID1 Input Read valid

RLAST1 Input Read last

RDATA1[63:0] Input Read data

RRESP1[1:0] Input Read response

RID1[3:0] Input Read ID

RREADY1 Output Read ready

Table A-8 Master port 1 write address channel

Signal Input/Output Description

AWREADY1 Input Address ready.

AWVALID1 Output Address valid.

AWADDR1[31:0] Output Address.

AWLEN1[3:0] Output Burst length.

AWSIZE1[1:0] Output Burst size.

AWBURST1[1:0] Output Burst type.

AWLOCK1[1:0] Output Lock type.

AWCACHE1[3:0] Output Cache type.

AWPROT1[2:0] Output Protection type.

AWID1[3:0] Output Address ID.

AWUSER1[6:0] Output AWUSER1[6] clean eviction transfer

AWUSER1[5] eviction transfer

AWUSER1[4:1] Inner memory region attributes

AWUSER1[0] memory region Shared attribute.
A-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Signal Descriptions
Table A-9 shows the master port 1 write channel signals.

Table A-10 shows the master port 1 write response channel signals.

Table A-9 Master port 1 write channel

Signal Input/Output Description

WREADY1 Input Write ready

WVALID1 Output Write valid

WLAST1 Output Write last

WDATA1[63:0] Output Write data

WSTRB1[7:0] Output Write strobes

WID1[3:0] Output Write ID

Table A-10 Master port 1 write response channel

Signal Input/Output Description

BVALID1 Input Response valid

BRESP1[1:0] Input Write response

BID1[3:0] Input Response ID

BREADY1 Output Response ready
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. A-7
Unrestricted Access Non-Confidential

Signal Descriptions
A.2 Interrupt lines

Table A-11 shows the interrupt line signals.

Table A-11 Interrupt line signals

Signal Input / Output Description

INT[n:0]a

a. The minimum pulse width of signals driving external interrupt lines is two CPU
clock cycles.

Input Interrupt distributor interrupt lines.

n can be 31, 63,…, up to 223 by increments of 32.

If there are no interrupt lines this pin is removed.

nIRQ[3:0] Input CPU legacy IRQ request input lines.

nFIQ[3:0] Input CPU private FIQ request input lines.
A-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Signal Descriptions
A.3 Debug interface

Table A-12 shows the debug interface signals.

Table A-12 Debug interface signals

Signal Input/Output Description

TCK[3:0] Input Test clock

nTRST[3:0] Input Debug reset (Active-LOW)

TMS[3:0] Input Debug TMS

EDBGRQ[3:0] Input External Debug Request

DBGEN[3:0] Input Debug Enable

TDI[3:0] Input All TDI pins are synchronized before they are fed into the core

TDO[3:0] Output Debug TDO

DBGNOPWRDWN[3:0] Output Debugger has requested MP11 CPU is not powered down

DBGnTDOEN[3:0] Output Debug TDO enable

COMMTX[3:0] Output Comms Channels Transmit

COMMRX[3:0] Output Comms Channels Receive

DBGACK[3:0] Output Debug Acknowledge

RTCK[3:0] Output Return test clock
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. A-9
Unrestricted Access Non-Confidential

Signal Descriptions
A.4 MBIST interface

Table A-13 shows the MBIST interface signals.

Note
 Some bus widths are different whether parity checking is implemented or not.

See Appendix C MBIST Controller and Dispatch Unit for a description of MBIST.

Table A-13 MBIST interface signals

Signal Input/Output Description

MBISTADDR[10:0] Input MBIST address bus

MBISTBE[23:0] (no parity) or
MBISTBE[71:0] (parity)

Input MBIST bit enable (no
parity) or MBIST byte
enable (parity)

MBISTCE[17:0] Input MBIST chip enable

MBISTDIN[63:0] (no parity) or
MBISTDIN[71:0] (parity)

Input MBIST data in

MBISTnRESET Input MBIST reset

MBISTWE Input MBIST write enable

MTESTON Input MBIST test is enabled

MBISTDOUT[255:0] (no parity) or
MBISTDOUT[287:0] (parity)

Output MBIST data out
A-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Signal Descriptions
A.5 Power control interface

Table A-14 shows power control interface signals.

Table A-14 Power control interface signals

Signal Input/Output Description

PWRCTLO0[1:0] Output b0x CPU0 must be powered on

b10 CPU0 can enter dormant mode

b11 CPU0 can enter powered-off mode.

PWRCTLO1[1:0] Output b0x CPU1 must be powered on

b10 CPU1 can enter dormant mode

b11 CPU1 can enter powered-off mode.

PWRCTLO2[1:0] Output b0x CPU2 must be powered on

b10 CPU2 can enter dormant mode

b11 CPU2 can enter powered-off mode.

PWRCTLO3[1:0] Output b0x CPU3 must be powered on

b10 CPU3 can enter dormant mode

b11 CPU3 can enter powered-off mode.

PWRCTLI0[1:0] Input Reset value for CPU status register [1:0]

PWRCTLI1[1:0] Input Reset value for CPU status register [3:2]

PWRCTLI2[1:0] Input Reset value for CPU status register [5:4]

PWRCTLI3[1:0] Input Reset value for CPU status register [7:6]

RAMCLAMP[4:0] Input RAM Clamps control signals:

RAMCLAMP[4] SCU RAMs

RAMCLAMP[3] CPU3 RAMs

RAMCLAMP[2] CPU2 RAMs

RAMCLAMP[1] CPU1 RAMs

RAMCLAMP[0] CPU0 RAMs
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. A-11
Unrestricted Access Non-Confidential

Signal Descriptions
CPUCLAMP[3:0] Input CPU interrupt interface clamps control signals

CPUCLAMP[3] CPU3 I/F

CPUCLAMP[2] CPU2 I/F

CPUCLAMP[1] CPU1 I/F

CPUCLAMP[0] CPU0 I/F

BISTCLAMP Input BIST interface clamp control signal

DEBUGCLAMP Input Debug interface clamp control signal

Table A-14 Power control interface signals (continued)

Signal Input/Output Description
A-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Signal Descriptions
A.6 Miscellaneous signals

Table A-15 shows miscellaneous signals.

Table A-15 Miscellaneous signals

Signal Input/Output Description

CLK Input Global clock.

ACLKEN Input Master AXI buses clock enable. Clock enable for the AXI bus clock
domain to enable it to be clocked at a reduced rate.

nWDRESET[3:0] Input Individual watchdog resets.

nCPURESET[3:0] Input Individual MP11 CPU resets.

nSCURESET Input SCU global reset.

nPORESET[3:0] Input MP11 CPU debug logic reset.

CFGEND[1:0] Input Endianness configuration.

VINITHI[3:0] Input When HIGH, indicates high vecs mode for the respective MP11 CPU.

FIQISNMI[3:0] Input Disable FIQ mask bit in CPSR per MP11 CPU so that FIQ acts as NMI.

CLUSTERID[3:0] Input Value read in CPU ID register field, bits[11:8]. See c0, CPU ID Register
on page 3-14.

PERIPHBASE[18:0] Input Specifies base address for private peripherals memory mapping.

MASTER1EN Input Number of master ports selected

0 = Master 0 only is used

1 = Master 0 and 1 are used.

ICTSTCLK Input Test clock for distributed interrupt controller. That clock is used to
bypass internally generated clock for at-speed ATPG. Bypass is active
when SCANMODE pin is high.

PMUIRQ[11:0] Output Interrupt requests by system metrics

Bit [0] for CPU0

Bit [1] for CPU1

Bit [2] for CPU2

Bit [3] for CPU3

Bits[11-4] for the SCU.

SMPnAMP[3:0] Output Signals AMP or SMP mode for each MP11 CPU.

RESETREQ[3:0] Output Individual watchdog reset requests.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. A-13
Unrestricted Access Non-Confidential

Signal Descriptions
STANDBYWFI[3:0] Output Indicates if an MP11 CPU is in WFI state.

STANDBYWFE[3:0] Output Indicates if an MP11 CPU is in WFE state.

EVNTIN Input Event Input for MP11 CPUs wake-up from WFE state.

EVNTOUT Output Event Output (active when an SEV instruction is executed).

Table A-15 Miscellaneous signals (continued)

Signal Input/Output Description
A-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Signal Descriptions
A.7 Scan test signals

Table A-16 lists the scan test signals.

Table A-16 Scan test signals

Name Direction Description

SCANMODE Input In scan test mode

SE1 Input Scan enable

SE2 Input Scan enable

SE3 Input Scan enable

SE4 Input Scan enable

SE5 Input Scan enable
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. A-15
Unrestricted Access Non-Confidential

Signal Descriptions
A.8 ETM interface signals

Table A-17 lists the ETM interface signals for each core.

Table A-17 ETM interface signals

Name Direction Description

ETMPWRUP0 Input Indicates that the ETM is active. When LOW
the trace interface must be clock gated to
conserve power.

nETMWFIREADY0 Input Handshake signal from external ETM to the
core telling the core it can enter WFI.

ETMWFIPENDING0 Output Indicates to external ETM that the core
requires to enter WFI.

ETMIA0[31:0] Output This is the address for:

ARM executed instruction + 8

Thumb executed instruction + 4

Java executed instruction.

ETMIARET0[31:0] Output Address to return to if branch is incorrectly
predicted.

ETMIACTL0[17:0] Output Instruction interface control signals.

ETMPADV0[2:0] Output Indicates when a new instruction enters
pipeline stages Ex3, Ex2, and ADD.

ETMDA0[31:3] Output Address for data transfer.

ETMDACTL0[17:0] Output Data address interface control signals.

ETMDR0[63:0] Output Contains the data for a load, MRC instruction.

ETMDRCTL0[3:0] Output Data value interface read control signals.

ETMDW0[63:0] Output Contains the written data.

ETMDWCTL0[1:0] Output Data value interface write control signals.

ETMCPADDRESSE0[14:0] Output Register number.

ETMCPRDATA0[31:0] Output Read data.
A-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Signal Descriptions
ETMCPWRITE0 Output Read or write. Asserted for write.

ETMCPCOMMIT0 Output Commit. If this signal is LOW two cycles
after ETMCPENABLE is asserted, the
transfer is canceled and must not take any
effect.

ETMCPENABLE0 Output Interface enable. ETMCPWRITE and
ETMCPADDRESS are valid this cycle, and
the remaining signals are valid two cycles
later.

Table A-17 ETM interface signals (continued)

Name Direction Description
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. A-17
Unrestricted Access Non-Confidential

Signal Descriptions
A.9 Parity signals

Table A-18 lists the parity signals for each core.

Note
 Table A-18 lists the parity signals for CPU0. For each CPU that is present, the signal
names are associated with the corresponding CPU number such as CPU1, CPU2, or
CPU3. For example, CPU0DDATAERR[7:0] is the signal name for the data side data
RAM parity error for CPU0 and CPU1DDATAERR[7:0] is the signal name for the data
side data RAM parity error for CPU1.

Table A-18 Parity signals

Name Direction Description

CPU0DDATAERR[7:0] Output Data side data RAM parity error

CPU0IDATAERR[7:0] Output Instruction side data RAM parity error

CPU0DTAGERR[3:0] Output Data side tag RAM parity error

CPU0ITAGERR[3:0] Output Instruction side tag RAM parity error

CPU0DDIRTYERR Output Data side dirty RAM parity error

SCUTAGERR[15:0] Output SCU tag RAM parity errora

a. This signal is present only if you have more than one CPU.

CPU0BTACERR Output BTAC RAM parity error

CPU0TLBERR[1:0] Output TLB RAM parity error
A-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Appendix B
AC Characteristics

This chapter gives the timing diagram and timing parameters for the ARM11 MPCore
processor. It contains the following sections:

• MPCore timing on page B-2

• MPCore signal timing parameters on page B-3.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. B-1
Unrestricted Access Non-Confidential

AC Characteristics
B.1 MPCore timing

The AMBA bus interface of the ARM11 MPCore processor conforms to the AMBA
Specification. See the AMBA AXI Protocol Specification for the relevant timing
diagrams for the ARM11 MPCore processor.
B-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

AC Characteristics
B.2 MPCore signal timing parameters

Signal timing parameters are given in:

• Registered signals

• Unregistered signals.

B.2.1 Registered signals

To ensure ease of integration of the ARM11 MPCore processor into embedded
applications, and to simplify synthesis flow, the following design techniques have been
used:

• a single rising edge clock times all activity

• all signals and buses are unidirectional

• all inputs are required to be synchronous to the relevant clock, CLK, or HCLK.

These techniques simplify the definition of the ARM11 MPCore processor top-level
signals because all outputs change from the rising edge and all inputs are sampled with
the rising edge of the clock. In addition, all signals are either input or output only.
Bidirectional signals are not used.

B.2.2 Unregistered signals

The unregistered input signals are:

• ARREADY0, ARREADY1
• RVALID0, RVALID1
• AWREADY0, AWREADY1
• WREADY0, WREADY1
• BVALID0, BVALID1
• INT[n:0], nIRQ[3:0]
• CLK, ACLKEN,nWDRESET[3:0], nCPURESET[3:0], nSCURESET, and

nPORESET[3:0].

There are no unregistered output signals.

Figure B-1 on page B-4 shows the target timing parameters for unregistered signals.
The timing parameter T is the internal clock latency of the clock buffer tree, and it is
dependent on process technology and design parameters. Timing parameters ending
with suffix h represent hold times. Timing parameters ending with suffix d represent
delay times. Contact your silicon supplier for more details.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. B-3
Unrestricted Access Non-Confidential

AC Characteristics
Figure B-1 Target timing parameters for unregistered signals

Note
 Actual clock frequencies and input and output timing constraints vary according to
application requirements and the silicon process technologies used. The maximum
operating clock frequencies attained by ARM devices increases over time as a result.

System CLK

or HCLK

<input signal>

<output signal>

mpcore<name>h
T

mpcore<name>d
T

B-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Appendix C
MBIST Controller and Dispatch Unit

This chapter describes the MBIST controller and MBIST dispatch unit. It contains the
following sections:

• About MBIST on page C-2

• MBIST controller and MBIST dispatch unit on page C-4

• MBIST controller on page C-5

• MBIST dispatch unit on page C-6

• MBIST signal descriptions on page C-7

• Shift register and fail datalog format on page C-12

• Fail data log on page C-14

• Testing RAM on page C-15

• Testing MP11 CPU RAMs on page C-17

• Testing MP11 SCU RAM on page C-24

• Test patterns on page C-26.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. C-1
Unrestricted Access Non-Confidential

MBIST Controller and Dispatch Unit
C.1 About MBIST

Memory Built-in Self Test (MBIST) provides a way to directly test the compiled RAM
memory cells used in the MPCore cores, MP11 CPU0-MP11 CPU3, and the Snoop
Control Unit. MBIST writes and reads all locations of the RAM to ensure that the cells
are operating correctly. MPCore MBIST can access up to four cores in parallel,
provided they use the same RAM size configuration.

MBIST mode take priority over all other modes. RAM arrays are only accessible to the
MPCore MBIST block when MBIST mode is activated with the MTESTON pin. In
functional mode, MTESTON must be kept LOW.

Figure C-1 on page C-3 shows the functional blocks of the MPCore MBIST module.
C-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MBIST Controller and Dispatch Unit
Figure C-1 MBIST block diagram

MPCore

MBIST module

Testing
equipment

MBIST
Dispatch

Unit

MPCore
MBIST
Mux

mp11 ram_arrays

mp11_norams

MP11 CPU0

mp11 ram_arrays

mp11_norams

MP11 CPU1

mp11 ram_arrays

mp11_norams

MP11 CPU2

mp11 ram_arrays

mp11_norams

MP11 CPU3

SCU No
RAMs

SCU
RAMs

MBIST Controller

MBISTBE

MBISTDOUT

MBISTDIN

MBISTWE

MBISTCE

MBISTADDR

MBISTRX

MBISTTX

M
TE

ST
O

N
M

B
IS

TS
H

IF
T

M
B

IS
TD

SH
IF

T
M

B
IS

TD
AT

A
IN

M
B

IS
TR

U
N

M
B

IS
TR

ES
U

LT
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. C-3
Unrestricted Access Non-Confidential

MBIST Controller and Dispatch Unit
C.2 MBIST controller and MBIST dispatch unit

The MBIST module consists of:

• an MBIST controller

• an MBIST dispatch unit.

The controller and dispatch unit can test all RAM arrays in the ARM11 MPCore
processor. This port connects to the RAM through existing multiplexers within the core,
removing the requirement to increase the length of the critical path.

Two signals, MBISTTX[11:0] and MBISTRX[5:0], are used to exchange data
between the MBIST controller and MBIST dispatch unit.

C.2.1 MBIST Instruction Register

MBIST executes loaded instructions stored in the MBIST Instruction Register. The
Instruction Register is 56 bits wide. It is split between the control and dispatch unit:

• 18 bits are used for the control unit

• 38 bits are used for the dispatch unit.

The MBIST Instruction Register is loaded through the serial port using the
MBISTDATAIN control unit when MBISTSHIFT is asserted.

MBISTDATAIN is serially passed through the MBIST Controller to the MBIST
dispatch unit using the MBISTTX[3] port, when MBISTSHIFT is asserted.
C-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MBIST Controller and Dispatch Unit
C.3 MBIST controller

The MBIST controller decodes the instruction to be performed that has been shifted
serially into a 56-bit shift register. A finite state machine then sequences through the
operations required to perform the required algorithm.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. C-5
Unrestricted Access Non-Confidential

MBIST Controller and Dispatch Unit
C.4 MBIST dispatch unit

The MBIST dispatch unit uses the signals supplied by the MBIST controller to perform
memory accesses using the MBIST Interface. The MBIST dispatch unit also evaluates
data obtained as the result of a read operation against expected data. This evaluation
requires the use of registers to store the pipelining of memory accesses within the core.
The dispatch unit also generates the addresses required at each stage of the test.

C.4.1 Address scrambler

For many tests neighboring cells must be accessed in turn. This is not the same as
accesses to sequential addresses. It is therefore necessary to scramble the target address
to perform a physical to logical mapping, so that sequential logical addresses access
neighboring cells. The address scrambler is located in the MBIST dispatch unit.
Partners must modify the address scrambler to perform the mapping required for their
RAMs.
C-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MBIST Controller and Dispatch Unit
C.5 MBIST signal descriptions

This section describes the MBIST signals:

• MBIST tester and MBIST controller signals

• Controller and dispatch unit signals on page C-8

• MBIST dispatch unit and MPCore signals on page C-10.

C.5.1 MBIST tester and MBIST controller signals

Table C-1shows the MBIST tester and MBIST controller signals.

Table C-1 MBIST tester and MBIST controller signals

Name

Direction
relative to
MBIST
controller

Description

MTESTON Input Switches multiplexers to give access to the RAMs. Must be HIGH during
MBIST mode.

MBISTSHIFT Input Enables serial loading of the MBIST Instruction Register through
MBISTDATAIN. This signal must be HIGH during instruction register
loading, and LOW otherwise. For more information about instruction register
format see Shift register and fail datalog format on page C-12.

MBISTDSHIFT Input Enables serial output of failing data log using MBISTRESULT[5:2].When
detecting a fail you must set MBISTDSHIFT to output a data log. The
MBIST controller stalls until MBISTDSHIFT becomes LOW. For more
information about data log format see Shift register and fail datalog format on
page C-12.

MBISTDATAIN Input Serial input port used to load the MBIST Instruction Register when
MBISTSHIFT is HIGH.

MBISTRUN Input Enables execution of the MBIST instruction previously loaded. It must be
HIGH during MBIST testing and it must be LOW during instruction register
loading.

MBISTRESULT[5:0] Output MBIST results and status.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. C-7
Unrestricted Access Non-Confidential

MBIST Controller and Dispatch Unit
MBISTRESULT values

Table C-2 shows the MBISTRESULT signals.

C.5.2 Controller and dispatch unit signals

Signals from the MBIST controller to the MBIST dispatch unit are combined onto the
MBISTTX bus. Table C-3 shows the MBISTTX bus bit assignments.

Table C-2 MBISTRESULT signal descriptions

Name Direction Description

MBISTRESULT[5] Output Serially outputs a data log for CPU3 when MBISTDSHIFT is asserted.
Serially outputs the previous contents of the MBIST Instruction Register if
MBISTSHIFT is asserted. Outputs an address expired signal otherwise.

MBISTRESULT[4] Output Serially outputs a data log for CPU2 when MBISTDSHIFT is asserted.
Serially outputs the previous contents of the MBIST Instruction Register if
MBISTSHIFT is asserted. Outputs an address expired signal otherwise.

MBISTRESULT[3] Output Serially outputs a data log for CPU1 when MBISTDSHIFT is asserted.
Serially outputs the previous contents of the MBIST Instruction Register if
MBISTSHIFT is asserted. Outputs an address expired signal otherwise.

MBISTRESULT[2] Output Serially outputs a data log for CPU0 when MBISTDSHIFT is asserted.
Serially outputs the previous contents of the MBIST Instruction Register if
MBISTSHIFT is asserted. Outputs an address expired signal otherwise.

MBISTRESULT[1] Output Outputs a fail detection signal if compare fails on any of the MP11 CPUs.

MBISTRESULT[0] Output Outputs a test finished signal.

Table C-3 MBISTTX bus bit assignments

Bit Equivalent Signal

[11] Stall dispatch unit pipeline.

[10] Update data counter in dispatch unit and force it to use a predefined data seed for go/nogo test.

[9] Bitmap mode requested.

[8] Yfast performed if 1, Xfast else.

[7] Direction bit for updating address. Up if 0, down if 1.

[6] Instruct dispatch unit that MBIST is in read mode.
C-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MBIST Controller and Dispatch Unit
Signals from the MBIST dispatch unit to the MBIST controller are grouped on the
MBISTRX bus.

When instruction shift is enabled, data in the BIST Control Instruction Register is
shifted to dispatch on bit [3] (AddrExpire in normal operation). Table C-4 shows the
MBISTRX bit assignments.

[5] Instruct dispatch unit that MBIST is in write mode. Registered to create MBISTWE. No compare is performed in
write mode.

[4] DataCkbd.

[3] Invert data seed bits in run mode or enable dispatch unit instruction load if MBISTSHIFT asserted.

[2] AddrSacrifice.

[1] Instruct dispatch unit to modify address in accordance with MBISTTX[8:7].

[0] Reset Address to start address.

Table C-3 MBISTTX bus bit assignments (continued)

Bit Equivalent Signal

Table C-4 MBISTR[5:0]

Bit Equivalent Signal

[5] AddrExpire / InstOut CPU3

[4] AddrExpire / InstOut CPU2

[3] AddrExpire / InstOut CPU1

[2] AddrExpire / InstOut CPU0

[1] Stall

[0] Fail bit (one fault on at least one MP11 CPU)
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. C-9
Unrestricted Access Non-Confidential

MBIST Controller and Dispatch Unit
C.5.3 MBIST dispatch unit and MPCore signals

Table C-5 shows the MBIST dispatch unit signals.

To enable testing of all CPUs of MPCore in parallel, MBISTDOUT is 256 bits wide.
Table C-6 shows the mappings of the MP11 CPUs to the MBISTDOUT bits.

Note
 Some bus widths are different depending on whether parity checking is implemented or
not.

Table C-5 MBIST dispatch unit signals

Name Direction Description

MTESTON Input Switches multiplexers to give access to the RAMs. Must be HIGH
during MBIST mode.

MBISTDIN[63:0] (no parity) or
MBISTDIN[71:0] (parity)

Input Data to the RAMs. Not all RAMs use the full width.

MBISTADDR[10:0] Input Address. Not all RAMs use the full address width.

MBISTBE[23:0] (no parity) or
MBISTBE[71:0] (parity)

Input MBIST bit enable (no parity) or MBIST byte enable (parity).

MBISTCE[17:0] Input Chip enables for each of the RAMs.

MBISTWE Input Global write enable going to all of the RAMs.

MBISTDOUT[255:0] (no
parity) or MBISTDOUT[287:0]
(parity)

Output Data out for all of the RAMs. The RAM is selected using
MBISTCE.

Table C-6 CPU mappings to MBISTOUT bits

CPU name CPU data bits Corresponding MBISTDOUT bits

CPU0 [63:0] (no parity) or [71:0] (parity) [63:0] (no parity) or [71:0] (parity)

CPU1 [63:0] (no parity) or [71:0] (parity) [127:64] (no parity) or [143:72] (parity)

CPU2 [63:0] (no parity) or [71:0] (parity) [191:128] (no parity) or [215:144] (parity)

CPU3 [63:0] (no parity) or [71:0] (parity) [255:192] (no parity) or [287:216] (parity)
C-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MBIST Controller and Dispatch Unit
Table C-7 shows MBISTCE[17:0] encoding.

Table C-7 MBISTCE encodings

MBISTCE bit RAM

MBISTCE[17] SCU tag RAM way 3 and SCU tag RAM way 2

MBISTCE[16] SCU tag RAM way 1 and SCU tag RAM way 0

MBISTCE[15] DData RAM way 3

MBISTCE[14] DData RAM way 2

MBISTCE[13] DData RAM way 1

MBISTCE[12] DData RAM way 0

MBISTCE[11] DTagRAM way 3 and DTagRAM way 2

MBISTCE[10] DTagRAM way 1 and DTagRAM way 0

MBISTCE[9] DDirty RAM

MBISTCE[8] IDataRAM array 7 and IDataRAM array 6

MBISTCE[7] IDataRAM array 5 and IDataRAM array 4

MBISTCE[6] IDataRAM array 3 and IDataRAM array 2

MBISTCE[5] IDataRAM array 1 and IDataRAM array 0

MBISTCE[4] ITagRAM way 3 and ITagRAM way 2

MBISTCE[3] ITagRAM way 1 and ITagRAM way 0

MBISTCE[2] BTAC RAMs

MBISTCE[1] TLB RAM array 1

MBISTCE[0] TLB RAM array 0
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. C-11
Unrestricted Access Non-Confidential

MBIST Controller and Dispatch Unit
C.6 Shift register and fail datalog format

The Shift Instruction Register is a 56-bit wide serially loaded register. It is split between
the MBIST controller, 18 bits, and the MBIST dispatch unit, 38 bits.

The MBIST Instruction Register is loaded serially from bit 0 to bit 55 using
MBISTDATAIN. Table C-8 shows the bit assignments.

Table C-9 shows the MBIST dispatch unit bit assignments.

Table C-8 MBIST Instruction Register bit assignments

Bits Description

[55:50] Pattern selection. See Table C-25 on page C-26.

[49:44] Control signal (bitmap, stop on fail).

[43:41] Write latency.

[40:38] Read latency.

Table C-9 MBIST Dispatch Unit bit assignments

Bits Description

[37:33] One hot encoded CPU enable. This bus, CPUON [3:0], enables comparison to be done on requested CPUs.
For comparison on MP11 CPU3, set cpuon[3].

For comparison on MP11 CPU2, set cpuon[2].

For comparison on MP11 CPU1, set cpuon[1].

For comparison on MP11 CPU0, set cpuon[0].

[33:30] Max X address. Number of columns.

[29:26] Max Y address. Number of rows.

[25:22] Data seed. Can be overridden by controller for go/nogo test.
C-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MBIST Controller and Dispatch Unit
[21:4] One hot encoded array enable. See encoding below.

[3:2] Column width from 4 to 32.

00 column width is 4.

01 column width is 8.

10 column width is 16.

11 column width is 32.

[1:0] Cache size.

00 cache size is 16KB.

01 cache size is 16KB.

10 cache size is 32KB.

11 cache size is 64KB.

Table C-9 MBIST Dispatch Unit bit assignments (continued)

Bits Description
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. C-13
Unrestricted Access Non-Confidential

MBIST Controller and Dispatch Unit
C.7 Fail data log

The fail data log is 79 bits wide (no parity) or 87 bits wide (with parity) for each CPU.
Table C-10 shows the bit assignments.

Table C-10 Data log bit assignments

Bits Description

[78:68] (no parity) or [86:76] (with parity) Failing address.

[67:4] (no parity) or [75:4] (with parity) Data read compare from MP11 CPUs, failing bits are set to 1.

[3:0] (no parity) or [3:0] (with parity) Four bits data seed used during test.
C-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MBIST Controller and Dispatch Unit
C.8 Testing RAM

Table C-11 shows the configuration options in mpcore_mbist_defs.v. Your chosen
options must match the MPCore RTL.

For each CPU of MPCore, and the corresponding tag RAMs in the SCU, each of the
RAMs can be accessed using the interface in the following way, assuming maximum
RAM sizes. Table C-12 shows the correspondences between the RAMs and the
MBISTCE bits.

Note
 Some bus widths are different depending on whether parity checking is implemented or
not.

Table C-11 RTL options

Variable name Purpose Default

BIST_NB_CPU Indicates the number of MP11 CPUs implemented in MPCore 4

BIST_CPU0_PRESENT CPU0 is present Present

BIST_CPU1_PRESENT CPU1 is present Present

BIST_CPU2_PRESENT CPU2 is present Present

BIST_CPU3_PRESENT CPU3 is present Present

Table C-12 RAM accesses using MBISTCE

RAM name MBISTCE bit Data in bits Max address bits

SCUTagRAM way 3 [17] [43:22] (no parity) or [60:36] (parity) [8:0]

SCUTagRAM way 2 [17] [21:0] (no parity) or [24:0] (parity) [8:0]

SCUTagRAM way 1 [16] [43:22] (no parity) or [60:36] (parity) [8:0]

SCUTagRAM way 0 [16] [21:0] (no parity) or [24:0] (parity) [8:0]

DDataRAM3 [15] [63:0] (no parity) or [71:0] (parity) [10:0]

DDataRAM2 [14] [63:0] (no parity) or [71:0] (parity) [10:0]

DDataRAM1 [13] [63:0] (no parity) or [71:0] (parity) [10:0]

DDataRAM0 [12] [63:0] (no parity) or [71:0] (parity) [10:0]
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. C-15
Unrestricted Access Non-Confidential

MBIST Controller and Dispatch Unit
DtagRAM way 3 [11] [21:0] (no parity) or [24:0] (parity) [8:0]

DtagRAM way 2 [11] [21:0] (no parity) or [24:0] (parity) [8:0]

DtagRAM way 1 [10] [21:0] (no parity) or [24:0] (parity) [8:0]

DtagRAM way 0 [10] [21:0] (no parity) or [24:0] (parity) [8:0]

DDirtyRAM [9] [23:0] (no parity) or [36:0] (parity) [8:0]

IDataRAM7 [8] [63:32] (no parity) or [71:36] (parity) [10:0]

IDataRAM6 [8] [31:0] (no parity) or [35:0] (parity) [10:0]

IDataRAM5 [7] [63:32] (no parity) or [71:36] (parity) [10:0]

IDataRAM4 [7] [31:0] (no parity) or [35:0] (parity) [10:0]

IDataRAM3 [6] [63:32] (no parity) or [71:36] (parity) [10:0]

IDataRAM2 [6] [31:0] (no parity) or [35:0] (parity) [10:0]

IDataRAM1 [5] [63:32] (no parity) or [71:36] (parity) [10:0]

IDataRAM0 [5] [31:0] (no parity) or [35:0] (parity) [10:0]

ITagRAM way 3 [4] [20:0] (no parity) or [23:0] (parity) [8:0]

ITagRAM way 2 [4] [20:0] (no parity) or [23:0] (parity) [8:0]

ITagRAM way 1 [3] [20:0] (no parity) or [23:0] (parity) [8:0]

ITagRAM way 0 [3] [20:0] (no parity) or [23:0] (parity) [8:0]

BTACRAM [2] [62:0] (no parity) or [70:0] (parity) [6:0]

TLBRAM1 [1] [59:0] (no parity) or [67:0] (parity) [4:0]

TLBRAM0 [0] [59:0] (no parity) or [67:0] (parity) [4:0]

Table C-12 RAM accesses using MBISTCE (continued)

RAM name MBISTCE bit Data in bits Max address bits
C-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MBIST Controller and Dispatch Unit
C.9 Testing MP11 CPU RAMs

Testing MP11 CPU RAMs is described in:

• Testing MP11 Dside data RAM

• Testing MP11 Dside tag RAM on page C-18

• Testing MP11 Iside data RAM on page C-19

• Testing MP11 Iside tag RAM on page C-20

• Testing MP11 data dirty RAM on page C-21

• Testing MP11 TLB RAM on page C-22

• Testing MP11 BTAC RAM on page C-23.

C.9.1 Testing MP11 Dside data RAM

Dside data RAM is made up of four ways and eight 32-bit wide blocks per MP11 CPU.
Ways are checked separately using MBISTCE[15:12] as the enable signals. Table C-13
shows the MBIST signals and the ways tested.

Table C-14 shows the RAM arrays used for each cache size.

Each Dside data array is 64 bits wide (no parity) or 72 bits wide (with parity). So, data
writes and data reads use the MBISTDIN and MBISTDOUT mapping for each MP11
CPU shown in Figure C-2 on page C-18. n has the values 0,1,2, or 3.

Table C-13 MBIST signals and ways

MBIST signal Way Data banks

MBISTCE[15] Way3 u_data_bank3 and u_data_bank7

MBISTCE[14] Way2 u_data_bank2 and u_data_bank6

MBISTCE[13] Way1 u_data_bank1 and u_data_bank5

MBISTCE[12] Way0 u_data_bank0 and u_data_bank4

Table C-14 Data cache size and Dside data RAM arrays

Data cache
size

Number of blocks
per MP11 CPU

Block size Address bus

16KB 8 512x32 (no parity) or 512x36 (parity) MBISTADDR[8:0]

32KB 8 1024x32 (no parity) or 1024x36 (parity) MBISTADDR[9:0]

64KB 8 2048x32 (no parity) or 2048x36 (parity) MBISTADDR[10:0]
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. C-17
Unrestricted Access Non-Confidential

MBIST Controller and Dispatch Unit
Figure C-2 Data mapping for MBIST

C.9.2 Testing MP11 Dside tag RAM

Dside data RAM is made of four ways and four 22-bit wide blocks (no parity) or 25-bit
wide blocks (with parity). Ways are checked two by two using MBISTCE[11:10] as the
enable signal.

Table C-16 shows the RAM arrays used for each cache size.

Each Dside tag array is 22 bits wide (no parity) or 25 bits wide (with parity). So, data
reads use the following MBISTDOUT mapping for each MP11 CPU shown in
Figure C-3 on page C-19.

Dside data[63:0] (no parity) or Dside data[71:0] (with parity)

u_data_bank_(n+4) u_data_bank_(n)

Table C-15 MBIST signals and ways for Dside tag RAM

MBIST signal Ways Data banks

MBISTCE[10] Way0 and Way1 u_tag_ram0 and u_tag_ram1

MBISTCE[11] Way2 and Way3 u_tag_ram2 and u_tag_ram3

Table C-16 Data cache size and tag RAM arrays

Data cache size
Number of blocks
per MP11 CPU

Block size Address bus

16KB 4 128x22 (no parity) or 128x25 (parity) MBISTADDR[6:0]

32KB 4 256x22 (no parity) or 256x25 (parity) MBISTADDR[7:0]

64KB 4 512x22 (no parity) or 512x25 (parity) MBISTADDR[8:0]
C-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MBIST Controller and Dispatch Unit
Figure C-3 Dside tag RAM mapping

Depending on cache size some data bits are unused:

• for a 16KB data cache, comparison is performed on data tag data[21:0] (no parity)
or [24:0] (with parity)

• for a 32KB data cache, comparison is performed on data tag data[21:1] (no parity)
or [24:1] (with parity)

• for a 64KB data cache, comparison is performed on data tag data[21:2] (no parity)
or [24:2] (with parity).

C.9.3 Testing MP11 Iside data RAM

Iside data RAM is made up of four ways and eight 32-bit high blocks per MP11 CPU.
Blocks are checked two by two using MBISTCE[8:5] as the enable signal.

Dtag data[21:0]way0/2Dtag data[21:0]way1/3 10'b000000000010'b0000000000no parity

with parity Dtag data[24:0]way0/2Dtag data[24:0]way1/3 11'b0000000000011'b00000000000

Table C-17 MBIST enable signals and Iside data RAM bocks

MBIST signal Iside data RAM blocks

MBISTCE[5] u_idata_bank0 and u_idata_bank1

MBISTCE[6] u_idata_bank1 and u_idata_bank5

MBISTCE[7] u_idata_bank2 and u_idata_bank6

MBISTCE[8] u_idata_bank3 and u_idata_bank7
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. C-19
Unrestricted Access Non-Confidential

MBIST Controller and Dispatch Unit
Table C-18 shows the RAM arrays used for each cache size.

Each Iside data array is 64 bits wide (no parity) or 72 bits wide (with parity). So, data
writes and data reads use the following MBISTDIN and MBISTDOUT mapping for
each MP11 CPU shown in Figure C-4.

Figure C-4 Iside data array mapping

C.9.4 Testing MP11 Iside tag RAM

Iside tag RAM is made of four ways and four 21-bit wide blocks.(no parity) or 24-bits
wide blocks (with parity). Table C-19 shows ways are checked two by two using
MBISTCE[4:3] as the enable signal.

Table C-18 Iside cache size and data RAM arrays

Instruction cache size
Number of blocks
per MP11 CPU

Block size Address bus

16KB 8 512x32 (no parity) or 512x36 (parity) MBISTADDR[8:0]

32KB 8 1024x32 (no parity) or 1024x36 (parity) MBISTADDR[9:0]

64KB 8 2048x32 (no parity) or 2048x36 (parity) MBISTADDR[10:0]

Iside data[63:0] (no parity)
Iside data[71:0] (with parity)

u_idata_bank_(n+1) u_idata_bank_(n)

Table C-19 MBIST signals and ways for Iside tag RAM

MBIST signal Ways Data banks

MBISTCE[3] Way0 and way1 u_tag_ram0 and u_tag_ram1

MBISTCE[4] Way2 and way3 u_tag_ram2 and u_tag_ram3
C-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MBIST Controller and Dispatch Unit
Table C-20 shows the RAM arrays used for each cache size.

Each Iside tag array is 21 bits wide (no parity) or 24 bits wide (with parity). So, data
reads use the following MBISTDOUT mapping for each MP11 CPU shown in
Figure C-5.

Figure C-5 Iside tag RAM MBISTDOUT mapping

C.9.5 Testing MP11 data dirty RAM

Data dirty data RAM is made of one 24-bit wide blocks (no parity) or 36-bit wide blocks
(with parity) enabled with MBISTCE[9]. Table C-21 shows the RAM arrays used for
each cache size.

Data dirty RAM is 24 bits wide (no parity) or 36 bits wide (with parity). So, data writes
and data reads use the MBISTDIN and MBISTDOUT mapping for each MP11 CPU
shown in Figure C-6 on page C-22.

Table C-20 Cache sizes and iside tag RAM arrays

Instruction cache size
Number of blocks
per MP11 CPU

Block size Address bus

16KB 4 128x21 (no parity) or 128x24 (parity) MBISTADDR[6:0]

32KB 4 256x21 (no parity) or 256x24 (parity) MBISTADDR[7:0]

64KB 4 512x21 (no parity) or 512x24 (parity) MBISTADDR[8:0]

Itag data[20:0]way0/211'b00000000000Itag data[20:0]way1/311'b00000000000

Itag data[23:0]way0/2{12{1'b0}}Itag data[23:0]way1/3{12{1'b0}}

no parity

with parity

Table C-21 Cache sizes and Data dirty RAMs arrays

Cache size
Number of
blocks per
MP11 CPU

Block size Address bus

16Kbytes 1 128x24 (no parity) or 128x36 (parity) MBISTADDR[6:0]

32Kbytes 1 256x24 (no parity) or 256x36 (parity) MBISTADDR[7:0]

64Kbytes 1 512x24 (no parity) or 512x36 (parity) MBISTADDR[8:0]
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. C-21
Unrestricted Access Non-Confidential

MBIST Controller and Dispatch Unit
Figure C-6 Data dirty RAM mapping

C.9.6 Testing MP11 TLB RAM

Regardless of the instruction cache size or the data cache size, TLB RAMs are
organized as two 32x60 RAM arrays (no parity) or 32x68 RAM arrays (with parity)
enabled using MBISTCE[1:0] as the enable signal. Table C-22 shows the TLB RAM
arrays and the MBIST enable signals.

Figure C-7 shows the TLB RAM array organization in an MP11 4-CPU configuration
from the MBIST point of view.

Figure C-7 TLB RAM organization with four MP11 CPUs

Each TLB RAM array is 60 bits wide. So, data writes and data reads use the following
MBISTDIN and MBISTDOUT mapping for each MP11 CPU shown in Figure C-8 on
page C-23.

{40{1'b0}} (no parity)
{36{1'b0}} (with parity)

Ddirty data[23:0] (no parity)
Ddirty data[35:0] (with parity)

Table C-22 TLB RAMs and MBIST signals

MBIST signal TLB RAM

MBISTCE[1] u_tlbram1

MBISTCE[0] u_tlbram0

u_tlbram0
(cpu3)

u_tlbram1
(cpu3)u_tlbram1

(cpu2)

u_tlbram0
(cpu2)u_tlbram0

(cpu1)

u_tlbram1
(cpu1)

u_tlbram0
(cpu0)

u_tlbram1
(cpu0)

MBISTCE[0]
MBISTADDR[4:0]
MBISTDIN
MBISTWE

MBISTCE[1]
MBISTADDR[4:0]
MBISTDIN
MBISTWE
C-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MBIST Controller and Dispatch Unit
Figure C-8 TLB mapping

C.9.7 Testing MP11 BTAC RAM

Branch target RAM is organized as one 128x63 RAM block (no parity) or 128x71 RAM
block (with parity) enabled using MBISTCE[2] as shown in Figure C-9.

Figure C-9 BTAC mapping

TLB data[59:0] (no parity)
TLB data[67:0] (with parity)4'b0000

1'b0 BTAC data[62:0] (no parity)
BTAC data[70:0] (with parity)
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. C-23
Unrestricted Access Non-Confidential

MBIST Controller and Dispatch Unit
C.10 Testing MP11 SCU RAM

Table C-23 shows enabling SCU RAM arrays using MBISTCE[17:16].

Figure C-10 shows the SCU RAM array organization in an MP11 4-CPU configuration
from the MBIST point of view.

Figure C-10 SCU RAM array organization

Table C-24 shows the RAM arrays used for each data cache size.

Each SCU RAM is 22 bits wide (no parity) or 25 bits wide (with parity). So, data writes
and data reads use the following MBISTDIN and MBISTDOUT mapping for each
MP11 CPU shown in Figure C-11 on page C-25.

Table C-23 Enabling SCU RAM arrays

Signal Ways RAM arrays

MBISTCE[16] Way 1 and Way 0 u_tag_ram0, u_tag_ram1, u_tag_ram4, u_tag_ram5, u_tag_ram8, u_tag_ram9,
u_tag_ram12, and u_tag_ram13.

MBISTCE[17] Way 2 and Way 3 u_tag_ram2, u_tag_ram3, u_tag_ram6, u_tag_ram7, u_tag_ram10, u_tag_ram11,
u_tag_ram14, and u_tag_ram15.

SCU/u_tag0

SCU/u_tag1

SCU/u_tag2

SCU/u_tag3

SCU/u_tag8 SCU/
u_tag12

SCU/u_tag9

SCU/
u_tag10

SCU/
u_tag11

SCU/
u_tag13

SCU/
u_tag14

SCU/
u_tag15

SCU/u_tag4

SCU/u_tag5

SCU/u_tag6

SCU/u_tag7

CPU0 SCU
tag arrays

CPU1 SCU
tag arrays

CPU2 SCU
tag arrays

CPU3 SCU
tag arrays

Way0

Way1

Way2

Way3

Table C-24 SCU RAM arrays and data cache sizes

Data cache size
Number of blocks per
MP11 CPU

Block size Address bus

16KB 4 128x22 (no parity) or 128x25 (parity) MBISTADDR[6:0]

32KB 4 256x22 (no parity) or 256x25 (parity) MBISTADDR[7:0]

64KB 4 518x22 (no parity) or 512x25 (parity) MBISTADDR[8:0]
C-24 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MBIST Controller and Dispatch Unit
Figure C-11 SCU tag RAM mapping

SCU tag data[21:0]way0/2SCU tag data[21:0]way1/3 10'b000000000010'b0000000000no parity

with parity SCU tag data[24:0]way0/2SCU tag data[24:0]way1/3 11'b0000000000011'b00000000000
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. C-25
Unrestricted Access Non-Confidential

MBIST Controller and Dispatch Unit
C.11 Test patterns

Table C-25 shows the Instruction Register values and the MBIST test patterns

Table C-25 Instruction Register values and MBIST test patterns

Instruction
Register
[55:50]

Pattern name Description

000000 WriteSolids Write data (16 x data seed) at address location. Increment address X fast.

000001 ReadSolids Read data (16 x data seed) at address location. Increment address X fast.

000010 WriteCkbd Write checkerboard data (16 x data seed) setting data polarity by using XOR
(Xaddr[0],Yaddr[0]).

000011 ReadCkbd Read checkerboard data (16xdataseed) setting data polarity by using
XOR(Xaddr[0],Yaddr[0].

000100 March C+ 1. Write Solids pattern incrementing Xfast.

2. Read data, write inverted data, read inverted data at one location then
increment address Xfast.

3. Reset Address to 0.

4. Read inverted data, write data, read data at one location then increment address
Xfast.

5. Set address to address max.

6. Read data, write inverted data, read inverted data at one location then
decrement address Xfast.

7. Set address to address max.

8. Read inverted data, write data, read data at one location then decrement
address Xfast.

9. Set address to address max.

10. Read Solids pattern, decrementing address Xfast.

000101 PttnFail Tests MBIST failure detection.

1. Insert an error (invert data polarity for a write solids pattern) every 16 address
to check the error detection logic detection, the first error at 0x0F, then 0x1F and
so on.

2. Then for each location read data (so faulty each 16 index), write inverted data,
read inverted data, increment address.

3. Then for each location read inverted data, write data, decrementing address.

4. Finish with a read solid incrementing address.
C-26 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

MBIST Controller and Dispatch Unit
000110 RW_Xmarch 1. Write Solids pattern incrementing address Xfast.

2. Read data, write inverted data, read inverted data at one location then
increment address Xfast.

3. Set address to address max.

4. Read inverted data, write data, read data at one location then decrement
address Xfast.

5. Read Solids pattern.

000111 RW_Y march Like RW_Xmarch but Yfast

001000 RWR_Xmarch Increment decrement wordline fast march.

001001 RWR_Ymarch Increment decrement bitline fast march.

001010 Bang Description.

1. Write solid pattern, incrementing address Xfast then reset address at 0 and read
data at address location.

2. Write inverted data at address location.

3. Do 6 consecutive write inverted data at corresponding address in sacrificial
row (row 0).

001011 MarchCy March C yfast (column fast).

111111 Go / No Go 2*W/RCkbd, RWR Ymarch, X Bang.

1. Write Checkerboard using 5 as dataseed incrementing address Xfast.

2. Reset Address to 0.

3. Read Checkerboard using 5 as dataseed incrementing address Xfast.

4. Reset Address to 0.

5. Write Checkerboard using 5 as dataseed incrementing address Xfast.

6. Reset Address to 0.

7. Read Checkerboard using 5 as dataseed incrementing address Xfast.

8. Perform a RWR Y march pattern.

9. Do a Bang pattern.

Table C-25 Instruction Register values and MBIST test patterns (continued)

Instruction
Register
[55:50]

Pattern name Description
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. C-27
Unrestricted Access Non-Confidential

MBIST Controller and Dispatch Unit
C-28 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Appendix D
Scan chain ordering with RVI

This appendix describes RealView ICE (RVI) scan chain ordering. It contains the
following section:

• Scan chain ordering with RVI on page D-2.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. D-1
Unrestricted Access Non-Confidential

Scan chain ordering with RVI
D.1 Scan chain ordering with RVI

Versions of RVI prior to 3.2 display the scan chain order with the last device in the JTAG
chain as zero. Table D-1 shows the MP11 CPUs and their physical JTAG chain positions
with respect to RVI scan chain ordering.

For example, if your scan chain has an ARM7 in the chain as the last unit it appears as
shown in Table D-2.

However, if your scan chain has an ARM7 in the chain as the first unit and an ARM9 as
the last unit they appear as shown in Table D-3.

Table D-1 RVI ordering, MP11 CPUID, and physical JTAG positions

RVI ordering MP11 CPU ID Physical JTAG chain position

3 0 First

2 1 Second

1 2 Third

0 3 Fourth

Table D-2 One additional item in the scan chain

RVI ordering MP11 CPU ID Physical JTAG chain position

4 0 First

3 1 Second

2 2 Third

1 3 Fourth

0 ARM7 Fifth

Table D-3 Two additional items in the scan chain

RVI ordering MP11 CPU ID Physical JTAG chain position

5 ARM7 First

4 0 Second

3 1 Third
D-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Scan chain ordering with RVI
See the RealView ICE User Guide for more information.

2 2 Fourth

1 3 Fifth

0 ARM9 Sixth

Table D-3 Two additional items in the scan chain (continued)

RVI ordering MP11 CPU ID Physical JTAG chain position
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. D-3
Unrestricted Access Non-Confidential

Scan chain ordering with RVI
D-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Appendix E
IEM

This appendix describes the provision of IEM in ARM11 MPCore processors. It
contains the following sections:

• Purpose of IEM on page E-2

• About AXI register slices on page E-4.

Note
 The ARM11 MPCore processor is IEM enabled but the level of support for the
technology depends on the specific implementation.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. E-1
Unrestricted Access Non-Confidential

IEM
E.1 Purpose of IEM

The purpose of IEM technology is to provide a dynamic optimization between
processor performance and power consumption.

E.1.1 Structure of IEM

The ARM11 MPCore processor provides a number of features that enable the processor
voltage to vary relative to the voltage of the rest of the system. For this purpose the
processor optionally implements placeholders for level shifters and clamps for some
inputs and outputs including the debug interface and MBIST signals.

In addition, AXI IEM register slices are provided alongside the ARM11 MPCore
processor IP.

Figure E-1 on page E-3 shows the structure for IEM in the processor. See the ARM11
MPCore Processor Configuration and Sign-off Guide for more information.

Note
 You are free to implement wrappers on the remaining signals depending on your SoC
architecture.
E-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

IEM
Figure E-1 IEM structure

E.1.2 Operation of IEM

IEM balances performance and power consumption by dynamic alteration of the
processor clock frequency and supply voltage. CLAMPEN is provided to control the
clamp cells between VCore and VSoc. Figure E-1 shows this.

E.1.3 Use of IEM

To use IEM the processor must be implemented with appropriate register slices and
included in a SoC that contains an Intelligent Energy Controller (IEC™). For example
systems, see the Intelligent Energy Controller Technical Overview.

IEM is functionally transparent to the user.

RAM

RAM wrapper

MP11 Noram

CPU wrapper

MP11 n

RAM

RAM wrapper

MP11 Noram

CPU wrapper

MP11 n+1

Wrappers

MBIST
 signals

 Snoop Control Unit

AXI IEM
register slice

AXI IEM
register slice

ARM11 MPCore processor

RAMCLAMP[n] RAMCLAMP[n+1]
CPUCLAMP[n] CPUCLAMP[n+1]

RAMRAM
wrapper

MBISTCLAMP

DEBUGCLAMP

RAMCLAMP[4]

Debug
signals
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. E-3
Unrestricted Access Non-Confidential

IEM
E.2 About AXI register slices

This section describes the external register slices and FIFOs used to provide an
asynchronous AXI interface. The top level structure of IEM interface is made of:

• A register slice in the VCore domain, made of FIFOs of various depths.

• A level shifter wrapper made of upshifter and downshifter cells.

For ease of implementation this wrapper is split into two wrappers, one
instantiating only downshifter cells, the other only upshifter cells.

• A register slice in the VSoc domain, made of FIFOs of various depths.

Figure E-2 shows the AXI register slices and level shifters in the ARM11 MPCore
processor. Channel direction is given with respect to main data flow for each channel.
Some signals are propagated backward to ensure correct handshaking.

Figure E-2 AXI register slices and level shifters

Level shifter
wrappers

VCore domain

VCORESliceAXI

Read address
channel

Read data
channel

Write address
channel

Write data
channel

Write response
channel

FIFO2Wr

FIFO3Rd

FIFO3Wr

FIFO2Rd

FIFO2Wr FIFO2Rd

FIFO3Rd

FIFO2Wr

VSoc domain

VSocSliceAXI

FIFO2Rd

FIFO3Wr

lvl shift

lvl shift

lvl shift

lvl shift

lvl shift
E-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

IEM
These register slices can be dynamically bypassed when the IEC requests high
performance. When the core is running at maximum performance, the master and slave
clocks to the IEM slice can be multiplexed out. This removes all the latency that the
synchronizers introduce. Figure E-3 shows the IEC request/acknowledge interface.

Figure E-3 IEC request/acknowledge interface

Figure E-4 shows the AXI write channel going from VCORE to VSOC. In
asynchronous mode data outputs come from FIFO slot 0 and FIFO slot 1 according to
the read and write values of the FIFO pointers. Bypass data is clamped to zero. When
SYNCMODEREQ goes HIGH the IEM slice closes its FIFOs to new data. Source data
is driven to output data through the bypass data channel. SYNCMODEACK is driven
HIGH to acknowledge the synchronous mode request.

Figure E-4 AXI write channel

SYNCMODEREQ

SYNCMODEACK

FIFOs draining FIFOs all empty
FIFOs muxed out Synchronization

can be removed

Normal FIFO
 operation FIFOs closed to new data Normal FIFO

operation

VCORESliceAXI

Handshaking and
control signals

Handshaking and
control signals

AXI
address

 write
 channelData write

logic
FIFO2Wr

Level
down
shifter

Level
up

shifter
AXI

address
 write

 channel

Data select
 logic

FIFO2Rd

FIFO
slot 1

FIFO
slot 0

SYNCMODEACK

SYNCMODEREQ

Bypass data

Slot 1 data
Slot 0 data

Bypass data
Slot 0 data

Slot 1 data

VSOCSliceAXI
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. E-5
Unrestricted Access Non-Confidential

IEM
E-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Appendix F
Revisions

This appendix describes the technical changes between released issues of this
document.

Table F-1 Differences between issue E and issue F

Change Location

ARM11 MPCore processor block diagram modified to
show the signal going from the Distributed Interrupt
Controller block to the Snoop Control Unit.

Figure 1-1 on page 1-3.

New section added. Parity checking support on page 1-32.

Deleted section entitled Additional instructions on page
2-36.

-

Added a note stating that the nIRQ and nFIQ signals are
level-sensitive and must be held LOW until a suitable
interrupt response is received from the processor.

Interrupt handling on page 1-16.

Note about unsigned and signed operations removed. The GE[3:0] bits on page 2-19.

Description updated to include parity checking support. c1, Auxiliary Control Register on page 3-33.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. F-1
Unrestricted Access Non-Confidential

Revisions
Steps to switch between modes clarified. AMP mode and SMP mode on page 3-35.

Graphic updated for the bit range of the Set field. Figure 3-27 on page 3-49.

Graphic updated to show bits [4:0] are ignored. Figure 3-28 on page 3-50.

Entry for Drain Synchronization Barrier renamed to Data
Synchronization Barrier.

Table 3-29 on page 3-47.

Modified the title of the Clean Data Cache Line example
to reflect set/way instead of index.

Example 3-1 on page 3-49.

Deleted paragraph about implementation of the
low-associative region from Main TLB implementation on
page 5-5.

-

Removed the last two paragraphs from Restrictions on
page table mappings for the instruction cache on
page 5-46.

-

Definition for Modified and Exclusive cache line updated
for clarity.

Coherency protocol on page 7-2.

Graphic updated to show that the ACLKEN signal is
HIGH on the rising clock edge ACLK.

Figure 8-2 on page 8-9.

Replaced links in the MPCore private memory region
table to reference register descriptions.

Table 9-1 on page 9-2.

SCU Control Register graphic and bit assignment table
updated to include information for parity checking
support.

Figure 9-1 on page 9-4 and Table 9-3 on page 9-5.

SCU Invalidate All Register bit assignment table updated
to describe which bit maps to which way.

Table 9-6 on page 9-9.

Information about Timer and Watchdog blocks from
Chapter 10 MPCore Distributed Interrupt Controller
moved into Chapter 9 MPCore Private Memory Region.

Timer and watchdog blocks on page 9-15.

Description for legacy nIRQ pin modified by adding
information about bit [0] of the CPU Interface Control
Register.

Interrupt Distributor on page 10-4.

Distributed Interrupt Controller programmers model table
updated to show address range for the Interrupt Line Level
Registers.

Table 10-1 on page 10-10.

Table F-1 Differences between issue E and issue F (continued)

Change Location
F-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Revisions
Added a paragraph about Pending interrupt with the
lowest possible priority to the existing Note for
clarification.

Interrupt Priority Registers, 0x400-0x4FC on page 10-15.

Modified title of the Interrupt Line Level Registers section
to include address range.

Interrupt Line Level Registers, 0xD00-0xD1C on
page 10-18.

Modified description for bits [25:24] Target list filter and
bits [23:16] CPU target list for clarity.

Table 10-4 on page 10-19.

Renamed Running Interrupt Register to Running Priority
Register.

Table 10-5 on page 10-20 and Running Priority Register,
0x14 on page 10-23.

Added a paragraph in the CPU Interface Control Register
section to describe the CPU interface enable bit [0].

CPU Interface Control Register, 0x00 on page 10-20.

Deleted section entitled CP14 debug logic on page 11-5. -

Reset modes table updated to simplify the mode
description.

Table 11-1 on page 11-4.

Deleted section entitled ARM11 MPCore processor reset
on page 11-5 and merged the description into the
Individual power-on reset section.

Individual power-on reset on page 11-4.

Changed Powered-off mode to Shutdown mode in the list
of modes in Section 11.5 and in Table 11-2.

Individual MP11 CPU power control on page 11-7 and
Table 11-2 on page 11-7.

Removed the section entitled Debug and power
management on page 11-13 for clarification.

-

Updated description for the Halt instruction in the
Supported public instructions table.

Table 13-1 on page 13-6.

Removed the sentence about the Device ID Register
version and manufacturer ID fields being routed to the
edge of the chip.

Device ID code register on page 13-8.

Deleted the last two sentences from the section entitled
Synchronizing RealView ICE.

Synchronizing RealView ICE on page 13-3.

Modified information about entering debug state for
clarity.

Entering debug state on page 13-4.

Added FCMP to the list of instructions that are not
considered as arithmetic CDP operations and are not
affected by flush-to-zero mode.

Flush-to-zero mode on page 16-13.

Table F-1 Differences between issue E and issue F (continued)

Change Location
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. F-3
Unrestricted Access Non-Confidential

Revisions
Clarified description for the IDC flag, FPSCR[7]. Input Subnormal exception on page 20-14.

Appendix A updated to include parity signals. Appendix A Signal Descriptions.

Appendix C updated to include information for parity
checking support.

Appendix C MBIST Controller and Dispatch Unit.

Replaced all occurrences of CPU interface with CPU
interrupt interface.

Throughout document.

Replaced all occurrences of Halt mode or Halt
debug-mode terminology with Halting debug-mode.

Throughout document including the Glossary.

Table F-1 Differences between issue E and issue F (continued)

Change Location
F-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary

This glossary describes some of the terms used in technical documents from ARM.

Abort A mechanism that indicates to a processor that the value associated with a memory
access is invalid. An abort can be caused by the external or internal memory system as
a result of attempting to access invalid instruction or data memory. An abort is classified
as either a Prefetch or Data Abort, and an internal or External Abort.

See also Data Abort, External Abort and Prefetch Abort.

Abort model An abort model is the defined behavior of an ARM processor in response to a Data
Abort exception. Different abort models behave differently with regard to load and store
instructions that specify base register write-back.

Addressing modes A mechanism, shared by many different instructions, for generating values used by the
instructions. For four of the ARM addressing modes, the values generated are memory
addresses (which is the traditional role of an addressing mode). A fifth addressing mode
generates values to be used as operands by data-processing instructions.

Advanced eXtensible Interface (AXI)
A bus protocol that supports separate address/control and data phases, unaligned data
transfers using byte strobes, burst-based transactions with only start address issued,
separate read and write data channels to enable low-cost DMA, ability to issue multiple
outstanding addresses, out-of-order transaction completion, and easy addition of
register stages to provide timing closure.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-1
Unrestricted Access Non-Confidential

Glossary
The AXI protocol also includes optional extensions to cover signaling for low-power
operation.

AXI is targeted at high performance, high clock frequency system designs and includes
a number of features that make it very suitable for high speed sub-micron interconnect.

Advanced High-performance Bus (AHB)
A bus protocol with a fixed pipeline between address/control and data phases. It only
supports a subset of the functionality provided by the AMBA AXI protocol. The full
AMBA AHB protocol specification includes a number of features that are not
commonly required for master and slave IP developments and ARM recommends only
a subset of the protocol is usually used. This subset is defined as the AMBA AHB-Lite
protocol.

See also Advanced Microcontroller Bus Architecture and AHB-Lite.

Advanced Microcontroller Bus Architecture (AMBA)
A family of protocol specifications that describe a strategy for the interconnect. AMBA
is the ARM open standard for on-chip buses. It is an on-chip bus specification that
describes a strategy for the interconnection and management of functional blocks that
make up a System-on-Chip (SoC). It aids in the development of embedded processors
with one or more CPUs or signal processors and multiple peripherals. AMBA
complements a reusable design methodology by defining a common backbone for SoC
modules.

Advanced Peripheral Bus (APB)
A simpler bus protocol than AXI and AHB. It is designed for use with ancillary or
general-purpose peripherals such as timers, interrupt controllers, UARTs, and I/O ports.
Connection to the main system bus is through a system-to-peripheral bus bridge that
helps to reduce system power consumption.

AHB See Advanced High-performance Bus.

AHB Access Port (AHB-AP)
An optional component of the DAP that provides an AHB interface to a SoC.

AHB-AP See AHB Access Port.

AHB-Lite A subset of the full AMBA AHB protocol specification. It provides all of the basic
functions required by the majority of AMBA AHB slave and master designs,
particularly when used with a multi-layer AMBA interconnect. In most cases, the extra
facilities provided by a full AMBA AHB interface are implemented more efficiently by
using an AMBA AXI protocol interface.
Glossary-2 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
Aligned A data item stored at an address that is divisible by the number of bytes that defines the
data size is said to be aligned. Aligned words and halfwords have addresses that are
divisible by four and two respectively. The terms word-aligned and halfword-aligned
therefore stipulate addresses that are divisible by four and two respectively.

AMBA See Advanced Microcontroller Bus Architecture.

Advanced Trace Bus (ATB)
A bus used by trace devices to share CoreSight capture resources.

APB See Advanced Peripheral Bus.

Application Specific Integrated Circuit (ASIC)
An integrated circuit that has been designed to perform a specific application function.
It can be custom-built or mass-produced.

Application Specific Standard Part or Product (ASSP)
An integrated circuit that has been designed to perform a specific application function.
Usually consists of two or more separate circuit functions combined as a building block
suitable for use in a range of products for one or more specific application markets.

Architecture The organization of hardware and/or software that characterizes a processor and its
attached components, and enables devices with similar characteristics to be grouped
together when describing their behavior, for example, Harvard architecture, instruction
set architecture, ARMv6 architecture.

Arithmetic instruction
Any VFPv2 Coprocessor Data Processing (CDP) instruction except FCPY, FABS, and
FNEG.

See also CDP instruction.

ARM instruction A word that specifies an operation for an ARM processor to perform. ARM instructions
must be word-aligned.

ARM state A processor that is executing ARM, 32-bit, word-aligned instructions is operating in
ARM state.

ASIC See Application Specific Integrated Circuit.

ASSP See Application Specific Standard Part or Product.

ATB See Advanced Trace Bus.

ATB bridge A synchronous ATB bridge provides a register slice to facilitate timing closure through
the addition of a pipeline stage. It also provides a unidirectional link between two
synchronous ATB domains.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-3
Unrestricted Access Non-Confidential

Glossary
An asynchronous ATB bridge provides a unidirectional link between two ATB domains
with asynchronous clocks. It is intended to support connection of components with ATB
ports residing in different clock domains.

ATPG See Automatic Test Pattern Generation.

Automatic Test Pattern Generation (ATPG)
The process of automatically generating manufacturing test vectors for an ASIC design,
using a specialized software tool.

AXI See Advanced eXtensible Interface.

AXI channel order and interfaces
The block diagram shows:

• the order in which AXI channel signals are described

• the master and slave interface conventions for AXI components.

AXI terminology The following AXI terms are general. They apply to both masters and slaves:

Active read transaction

A transaction for which the read address has transferred, but the last read
data has not yet transferred.

Active transfer

A transfer for which the xVALID1 handshake has asserted, but for which
xREADY has not yet asserted.

AXI
interconnect

Write address channel (AW)
Write data channel (W)

Write response channel (B)
Read address channel (AR)

Read data channel (R)

Write address channel (AW)
Write data channel (W)

Write response channel (B)
Read address channel (AR)

Read data channel (R)

AXI slave
interface

AXI master
interface

AXI
master

AXI
slave

AXI master
interface

AXI slave
interface

1. The letter x in the signal name denotes an AXI channel as follows:

AW Write address channel.

W Write data channel.

B Write response channel.

AR Read address channel.

R Read data channel.
Glossary-4 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
Active write transaction

A transaction for which the write address or leading write data has
transferred, but the write response has not yet transferred.

Completed transfer

A transfer for which the xVALID/xREADY handshake is complete.

Payload The non-handshake signals in a transfer.

Transaction An entire burst of transfers, comprising an address, one or more data
transfers and a response transfer (writes only).

Transmit An initiator driving the payload and asserting the relevant xVALID
signal.

Transfer A single exchange of information. That is, with one xVALID/xREADY
handshake.

The following AXI terms are master interface attributes. To obtain optimum
performance, they must be specified for all components with an AXI master interface:

Combined issuing capability

The maximum number of active transactions that a master interface can
generate. It is specified for master interfaces that use combined storage
for active write and read transactions. If not specified then it is assumed
to be equal to the sum of the write and read issuing capabilities.

Read ID capability

The maximum number of different ARID values that a master interface
can generate for all active read transactions at any one time.

Read ID width

The number of bits in the ARID bus.

Read issuing capability

The maximum number of active read transactions that a master interface
can generate.

Write ID capability

The maximum number of different AWID values that a master interface
can generate for all active write transactions at any one time.

Write ID width

The number of bits in the AWID and WID buses.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-5
Unrestricted Access Non-Confidential

Glossary
Write interleave capability

The number of active write transactions for which the master interface is
capable of transmitting data. This is counted from the earliest transaction.

Write issuing capability

The maximum number of active write transactions that a master interface
can generate.

The following AXI terms are slave interface attributes. To obtain optimum
performance, they must be specified for all components with an AXI slave interface:

Combined acceptance capability

The maximum number of active transactions that a slave interface can
accept. It is specified for slave interfaces that use combined storage for
active write and read transactions. If not specified then it is assumed to be
equal to the sum of the write and read acceptance capabilities.

Read acceptance capability

The maximum number of active read transactions that a slave interface
can accept.

Read data reordering depth

The number of active read transactions for which a slave interface can
transmit data. This is counted from the earliest transaction.

Write acceptance capability

The maximum number of active write transactions that a slave interface
can accept.

Write interleave depth

The number of active write transactions for which the slave interface can
receive data. This is counted from the earliest transaction.

Back-annotation The process of applying timing characteristics from the implementation process onto a
model.

Banked registers Those physical registers whose use is defined by the current processor mode. The
banked registers are r8 to r14.

Base register A register specified by a load or store instruction that is used to hold the base value for
the instruction’s address calculation. Depending on the instruction and its addressing
mode, an offset can be added to or subtracted from the base register value to form the
virtual address that is sent to memory.
Glossary-6 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
Base register write-back
Updating the contents of the base register used in an instruction target address
calculation so that the modified address is changed to the next higher or lower
sequential address in memory. This means that it is not necessary to fetch the target
address for successive instruction transfers and enables faster burst accesses to
sequential memory.

Beat Alternative word for an individual transfer within a burst. For example, an INCR4 burst
comprises four beats.

See also Burst.

BE-8 Big-endian view of memory in a byte-invariant system.

See also BE-32, LE, Byte-invariant and Word-invariant.

BE-32 Big-endian view of memory in a word-invariant system.

See also BE-8, LE, Byte-invariant and Word-invariant.

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are
stored at increasing addresses in memory.

See also Little-endian and Endianness.

Big-endian memory Memory in which:

• a byte or halfword at a word-aligned address is the most significant byte or
halfword within the word at that address

• a byte at a halfword-aligned address is the most significant byte within the
halfword at that address.

See also Little-endian memory.

Block address An address that comprises a tag, an index, and a word field. The tag bits identify the way
that contains the matching cache entry for a cache hit. The index bits identify the set
being addressed. The word field contains the word address that can be used to identify
specific words, halfwords, or bytes within the cache entry.

See also Cache terminology diagram on the last page of this glossary.

Bounce The VFP coprocessor bounces an instruction when it fails to signal the acceptance of a
valid VFP instruction to the ARM processor. This action initiates Undefined instruction
processing by the ARM processor. The VFP support code is called to complete the
instruction that was found to be exceptional or unsupported by the VFP coprocessor.

See also Trigger instruction, Potentially exceptional instruction, and Exceptional state.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-7
Unrestricted Access Non-Confidential

Glossary
Boundary scan chain
A boundary scan chain is made up of serially-connected devices that implement
boundary scan technology using a standard JTAG TAP interface. Each device contains
at least one TAP controller containing shift registers that form the chain connected
between TDI and TDO, through which test data is shifted. Processors can contain
several shift registers to enable you to access selected parts of the device.

Branch folding Branch folding is a technique where, on the prediction of most branches, the branch
instruction is completely removed from the instruction stream presented to the
execution pipeline. Branch folding can significantly improve the performance of
branches, taking the CPI for branches below one.

Branch phantom The condition codes of a predicted taken branch.

Branch prediction The process of predicting if conditional branches are to be taken or not in pipelined
processors. Successfully predicting if branches are to be taken enables the processor to
prefetch the instructions following a branch before the condition is fully resolved.
Branch prediction can be done in software or by using custom hardware. Branch
prediction techniques are categorized as static, in which the prediction decision is
decided before run time, and dynamic, in which the prediction decision can change
during program execution.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which
program execution is to be halted. Breakpoints are inserted by the programmer to enable
inspection of register contents, memory locations, variable values at fixed points in the
program execution to test that the program is operating correctly. Breakpoints are
removed after the program is successfully tested.

See also Watchpoint.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive,
there is no requirement to supply an address for any of the transfers after the first one.
This increases the speed at which the group of transfers can occur. Bursts over AMBA
are controlled using signals to indicate the length of the burst and how the addresses are
incremented.

See also Beat.

Byte-invariant In a byte-invariant system, the address of each byte of memory remains unchanged
when switching between little-endian and big-endian operation. When a data item
larger than a byte is loaded from or stored to memory, the bytes making up that data item
are arranged into the correct order depending on the endianness of the memory access.
The ARM architecture supports byte-invariant systems in ARMv6 and later versions.
When byte-invariant support is selected, unaligned halfword and word memory
accesses are also supported. Multi-word accesses are expected to be word-aligned.

See also Word-invariant.
Glossary-8 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
Byte lane strobe A signal that is used for unaligned or mixed-endian data accesses to determine which
byte lanes are active in a transfer. One bit of this signal corresponds to eight bits of the
data bus.

Byte swizzling The reverse ordering of bytes in a word.

Cache A block of on-chip or off-chip fast access memory locations, situated between the
processor and main memory, used for storing and retrieving copies of often used
instructions and/or data. This is done to greatly increase the average speed of memory
accesses and so improve processor performance.

See also Cache terminology diagram on the last page of this glossary.

Cache contention When the number of frequently-used memory cache lines that use a particular cache set
exceeds the set-associativity of the cache. In this case, main memory activity increases
and performance decreases.

Cache hit A memory access that can be processed at high speed because the instruction or data
that it addresses is already held in the cache.

Cache line The basic unit of storage in a cache. It is always a power of two words in size (usually
four or eight words), and is required to be aligned to a suitable memory boundary.

See also Cache terminology diagram on the last page of this glossary.

Cache line index The number associated with each cache line in a cache way. Within each cache way, the
cache lines are numbered from 0 to (set associativity) -1.

See also Cache terminology diagram on the last page of this glossary.

Cache lockdown To fix a line in cache memory so that it cannot be overwritten. Cache lockdown enables
critical instructions and/or data to be loaded into the cache so that the cache lines
containing them are not subsequently reallocated. This ensures that all subsequent
accesses to the instructions/data concerned are cache hits, and therefore complete as
quickly as possible.

Cache miss A memory access that cannot be processed at high speed because the instruction/data it
addresses is not in the cache and a main memory access is required.

Cache set A cache set is a group of cache lines (or blocks). A set contains all the ways that can be
addressed with the same index. The number of cache sets is always a power of two.

See also Cache terminology diagram on the last page of this glossary.

Cache way A group of cache lines (or blocks). It is 2 to the power of the number of index bits in size.

See also Cache terminology diagram on the last page of this glossary.

CAM See Content Addressable Memory.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-9
Unrestricted Access Non-Confidential

Glossary
Cast out See Victim.

CDP instruction Coprocessor data processing instruction. For the VFP11 coprocessor, CDP instructions
are arithmetic instructions and FCPY, FABS, and FNEG.

See also Arithmetic instruction.

Clean A cache line that has not been modified while it is in the cache is said to be clean. To
clean a cache is to write dirty cache entries into main memory. If a cache line is clean,
it is not written on a cache miss because the next level of memory contains the same
data as the cache.

See also Dirty.

Clock gating Gating a clock signal for a macrocell with a control signal and using the modified clock
that results to control the operating state of the macrocell.

Clocks Per Instruction (CPI)
See Cycles Per Instruction (CPI).

Coherency See Memory coherency.

Cold reset Also known as power-on reset. Starting the processor by turning power on. Turning
power off and then back on again clears main memory and many internal settings. Some
program failures can lock up the processor and require a cold reset to enable the system
to be used again. In other cases, only a warm reset is required.

See also Warm reset.

Communications channel
The hardware used for communicating between the software running on the processor,
and an external host, using the debug interface. When this communication is for debug
purposes, it is called the Debug Comms Channel. In an ARMv6 compliant processor,
the communications channel includes the Data Transfer Register, some bits of the Data
Status and Control Register, and the external debug interface controller, such as the
DBGTAP controller in the case of the JTAG interface.

Condensed Reference Format (CRF)
An ARM proprietary file format for specifying test vectors.

Condition field A four-bit field in an instruction that specifies a condition under which the instruction
can execute.

Conditional execution
If the condition code flags indicate that the corresponding condition is true when the
instruction starts executing, it executes normally. Otherwise, the instruction does
nothing.
Glossary-10 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
Content Addressable Memory (CAM)
Memory that is identified by its contents. Content Addressable Memory is used in
CAM-RAM architecture caches to store the tags for cache entries.

CAM includes comparison logic with each bit of storage. A data value is broadcast to
all words of storage and compared with the values there. Words that match are flagged
in some way. Subsequent operations can then work on flagged words. It is possible to
read the flagged words out one at a time or write to certain bit positions in all of them.

Context The environment that each process operates in for a multitasking operating system. In
ARM processors, this is limited to mean the physical address range that it can access in
memory and the associated memory access permissions.

See also Fast context switch.

Coprocessor A processor that supplements the main processor. It carries out additional functions that
the main processor cannot perform. Usually used for floating-point math calculations,
signal processing, or memory management.

Copy back See Write-back.

Core A core is that part of a processor that contains the ALU, the datapath, the
general-purpose registers, the Program Counter, and the instruction decode and control
circuitry.

Core module In the context of an ARM Integrator, a core module is an add-on development board that
contains an ARM processor and local memory. Core modules can run standalone, or can
be stacked onto Integrator motherboards.

Core reset See Warm reset.

CPI See Cycles per instruction.

CPSR See Current Program Status Register

CRF See Condensed Reference Format.

Cross Trigger Interface (CTI)
Part of an Embedded Cross Trigger device. The CTI provides the interface between a
processor/ETM and the CTM within an ECT.

Cross Trigger Matrix (CTM)
The CTM combines the trigger requests generated from CTIs and broadcasts them to
all CTIs as channel triggers within an Embedded Cross Trigger device.

CTI See Cross Trigger Interface.

CTM See Cross Trigger Matrix.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-11
Unrestricted Access Non-Confidential

Glossary
Current Program Status Register (CPSR)
The register that holds the current operating processor status.

Cycles Per instruction (CPI)
Cycles per instruction (or clocks per instruction) is a measure of the number of
computer instructions that can be performed in one clock cycle. This figure of merit can
be used to compare the performance of different processors that implement the same
instruction set against each other. The lower the value, the better the performance.

CoreSight The infrastructure for monitoring, tracing, and debugging a complete system on chip.

DAP See Debug Access Port.

Data Abort An indication from a memory system to the processor of an attempt to access an illegal
data memory location. An exception must be taken if the processor attempts to use the
data that caused the abort.

See also Abort, External Abort, and Prefetch Abort.

Data cache A block of on-chip fast access memory locations, situated between the processor and
main memory, used for storing and retrieving copies of often used data. This is done to
greatly increase the average speed of memory accesses and so improve processor
performance.

DBGTAP See Debug Test Access Port.

Debug Access Port (DAP)
A TAP block that acts as an AMBA, AHB or AHB-Lite, master for access to a system
bus. The DAP is the term used to encompass a set of modular blocks that support system
wide debug. The DAP is a modular component, intended to be extendable to support
optional access to multiple systems such as memory mapped AHB and CoreSight APB
through a single debug interface.

Debugger A debugging system that includes a program, used to detect, locate, and correct software
faults, together with custom hardware that supports software debugging.

Debug Test Access Port (DBGTAP)
The collection of four mandatory and one optional terminals that form the input/output
and control interface to a JTAG boundary-scan architecture. The mandatory terminals
are DBGTDI, DBGTDO, DBGTMS, and TCK. The optional terminal is TRST. This
signal is mandatory in ARM cores because it is used to reset the debug logic.

Default NaN mode A mode in which all operations that result in a NaN return the default NaN, regardless
of the cause of the NaN result. This mode is compliant with the IEEE 754 standard but
implies that all information contained in any input NaNs to an operation is lost.

Delta cycle A simulation cycle in which the simulation time at the beginning of the cycle is the same
as at the end of the cycle. That is, simulation time is not advanced in a delta cycle.
Glossary-12 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
Delta-sweeping The process by which the VHDL simulator advances through delta cycles. A sweep
covers many delta cycles.

Denormalized value See Subnormal value.

Design Simulation Model (DSM)
A functional simulation model of the device that is derived from the Register Transfer
Level (RTL) but that does not reveal its internal structure. The DSM does not model any
features added during synthesis such as internal scan chains. The DSM provides higher
speed for functional simulation than that of the Sign-Off Model (SOM).

Device Validation Suite (DVS)
A set of tests to check the functionality of a device against the functionality defined in
the Technical Reference Manual. Also stresses Bus Interface Unit (BIU), and low-level
memory sub-system, pipeline, cache and Tightly Coupled Memory (TCM) behavior.

Direct-mapped cache
A one-way set-associative cache. Each cache set consists of a single cache line, so cache
look-up selects and checks a single cache line.

Direct Memory Access (DMA)
An operation that accesses main memory directly, without the processor performing any
accesses to the data concerned.

Dirty A cache line in a write-back cache that has been modified while it is in the cache is said
to be dirty. A cache line is marked as dirty by setting the dirty bit. If a cache line is dirty,
it must be written to memory on a cache miss because the next level of memory contains
data that has not been updated. The process of writing dirty data to main memory is
called cache cleaning.

See also Clean.

Disabled exception An exception is disabled when its exception enable bit in the FPCSR is not set. For these
exceptions, the IEEE 754 standard defines the result to be returned. An operation that
generates an exception condition can bounce to the support code to produce the result
defined by the IEEE 754 standard. The exception is not reported to the user trap handler.

DMA See Direct Memory Access.

DNM See Do Not Modify.

Do Not Modify (DNM)
In Do Not Modify fields, the value must not be altered by software. DNM fields read as
Unpredictable values, and must only be written with the same value read from the same
field on the same processor.
DNM fields are sometimes followed by RAZ or RAO in parentheses to show which way
the bits must read for future compatibility, but programmers must not rely on this
behavior.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-13
Unrestricted Access Non-Confidential

Glossary
Double-precision value
Consists of two 32-bit words that must appear consecutively in memory and must both
be word-aligned, and that is interpreted as a basic double-precision floating-point
number according to the IEEE 754-1985 standard.

Doubleword A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise
stated.

Doubleword-aligned
A data item having a memory address that is divisible by eight.

DSM See Design Simulation Model.

DVS See Device Validation Suite.

ECT See Embedded Cross Trigger.

Embedded Cross Trigger (ECT)
The ECT is a modular component to support the interaction and synchronization of
multiple triggering events with an SoC.

EmbeddedICE logic An on-chip logic block that provides TAP-based debug support for ARM processor
cores. It is accessed through the TAP controller on the ARM processor using the JTAG
interface.

EmbeddedICE-RT The JTAG-based hardware provided by debuggable ARM processors to aid debugging
in real-time.

Embedded Trace Buffer
The ETB provides on-chip storage of trace data using a configurable sized RAM.

Embedded Trace Macrocell (ETM)
A hardware macrocell that, when connected to a processor, outputs instruction and data
trace information on a trace port. The ETM provides processor driven trace through a
trace port compliant to the ATB protocol.

Enabled exception An exception is enabled when its exception enable bit in the FPCSR is set. When an
enabled exception occurs, a trap to the user handler is taken. An operation that generates
an exception condition might bounce to the support code to produce the result defined
by the IEEE 754 standard. The exception is then reported to the user trap handler.

Endianness Byte ordering. The scheme that determines the order that successive bytes of a data
word are stored in memory. An aspect of the system’s memory mapping.

See also Little-endian and Big-endian

ETB See Embedded Trace Buffer.

ETM See Embedded Trace Macrocell.
Glossary-14 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
Event Simple An observable condition that an ETM can use to control aspects of a
trace.

Complex A boolean combination of simple events that an ETM can use to control
aspects of a trace.

Exception A fault or error event that is considered serious enough to require that program
execution is interrupted. Examples include attempting to perform an invalid memory
access, external interrupts, and undefined instructions. When an exception occurs,
normal program flow is interrupted and execution is resumed at the corresponding
exception vector. This contains the first instruction of the interrupt handler to deal with
the exception.

Exceptional state When a potentially exceptional instruction is issued, the VFP11 coprocessor sets the EX
bit, FPEXC[31], and loads a copy of the potentially exceptional instruction in the
FPINST register. If the instruction is a short vector operation, the register fields in
FPINST are altered to point to the potentially exceptional iteration. When in the
exceptional state, the issue of a trigger instruction to the VFP11 coprocessor causes a
bounce.

See also Bounce, Potentially exceptional instruction, and Trigger instruction.

Exception service routine
See Interrupt handler.

Exception vector See Interrupt vector.

Exponent The component of a floating-point number that normally signifies the integer power to
which two is raised in determining the value of the represented number.

External Abort An indication from an external memory system to a processor that the value associated
with a memory access is invalid. An external abort is caused by the external memory
system as a result of attempting to access invalid memory.

See also Abort, Data Abort and Prefetch Abort.

eXtensible Verification Component (XVC)
A model that is used to provide system/device stimulus and monitor responses.

See also XVC Test Scenario Manager.

Fast context switch
In a multitasking system, the point at which the time-slice allocated to one process stops
and the one for the next process starts. If processes are switched often enough, they can
appear to be running in parallel, in addition to being able to respond quicker to external
events that might affect them.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-15
Unrestricted Access Non-Confidential

Glossary
In ARM processors, a fast context switch is caused by the selection of a non-zero PID
value to switch the context to that of the next process. A fast context switch causes each
Virtual Address for a memory access, generated by the ARM processor, to produce a
Modified Virtual Address that is sent to the rest of the memory system to be used in
place of a normal Virtual Address. For some cache control operations Virtual Addresses
are passed to the memory system as data. In these cases no address modification takes
place.

See also Fast Context Switch Extension.

Fast Context Switch Extension (FCSE)
An extension to the ARM architecture that enables cached processors with an MMU to
present different addresses to the rest of the memory system for different software
processes, even when those processes are using identical addresses.

See also Fast context switch.

FCSE See Fast Context Switch Extension.

Fd The destination register and the accumulate value in triadic operations. Sd for
single-precision operations and Dd for double-precision.

Flash Patch and Breakpoint unit (FPB)
A set of address matching tags, that reroute accesses into flash to a special part of
SRAM. This permits patching flash locations for breakpointing and quick fixes or
changes.

Flat address mapping
A system of organizing memory in which each Physical Address contained within the
memory space is the same as its corresponding Virtual Address.

Flush-to-zero mode In this mode, the VFP11 coprocessor treats the following values as positive zeros:

• arithmetic operation inputs that are in the subnormal range for the input precision

• arithmetic operation results, other than computed zero results, that are in the
subnormal range for the input precision before rounding.

The VFP11 coprocessor does not interpret these values as subnormal values or convert
them to subnormal values.

The subnormal range for the input precision is –2Emin < x < 0 or 0< x < 2Emin.

Fm The second source operand in dyadic or triadic operations. Sm for single-precision
operations and Dm for double-precision

Fn The first source operand in dyadic or triadic operations. Sn for single-precision
operations and Dn for double-precision.
Glossary-16 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
Formatter The formatter is an internal input block in the ETB and TPIU that embeds the trace
source ID within the data to create a single trace stream.

Fraction The floating-point field that lies to the right of the implied binary point.

Front of queue pointer
Pointer to the next entry to be written to in the write buffer.

Fully-associative cache
A cache that has one cache set that consists of the entire cache. The number of cache
entries is the same as the number of cache ways.

See also Direct-mapped cache.

Gray code Continuous binary code in which only one bit changes for a change to the next state up
or down.

Half-rate clocking (ETM)
Dividing the trace clock by two so that the TPA can sample trace data signals on both
the rising and falling edges of the trace clock. The primary purpose of half-rate clocking
is to reduce the signal transition rate on the trace clock of an ASIC for very high-speed
systems.

Halfword A 16-bit data item.

Halting debug-mode One of two mutually exclusive debug modes. In Halting debug-mode a debug event,
such as a a breakpoint or watchpoint, causes the processor to enter a special Debug state.
In Debug state the processor is controlled through the external debug interface. This
interface also provides access to all processor state, coprocessor state, memory and
input/output locations.

See also Monitor debug-mode.

High vectors Alternative locations for exception vectors. The high vector address range is near the
top of the address space, rather than at the bottom.

Hit-Under-Miss (HUM)
A buffer that enables program execution to continue, even though there has been a data
miss in the cache.

Host A computer that provides data and other services to another computer. Especially, a
computer providing debugging services to a target being debugged.

HUM See Hit-Under-Miss.

IEEE 754 standard IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985. The
standard that defines data types, correct operation, exception types and handling, and
error bounds for floating-point systems. Most processors are built in compliance with
the standard in either hardware or a combination of hardware and software.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-17
Unrestricted Access Non-Confidential

Glossary
IEM See Intelligent Energy Management.

IGN See Ignore.

Ignore (IGN) Must ignore memory writes.

Illegal instruction An instruction that is architecturally Undefined.

IMB See Instruction Memory Barrier.

Implementation-defined
The behavior is not architecturally defined, but is defined and documented by individual
implementations.

Implementation-specific
The behavior is not architecturally defined, and does not have to be documented by
individual implementations. Used when there are a number of implementation options
available and the option chosen does not affect software compatibility.

Imprecise tracing A filtering configuration where instruction or data tracing can start or finish earlier or
later than expected. Most cases cause tracing to start or finish later than expected.

For example, if TraceEnable is configured to use a counter so that tracing begins after
the fourth write to a location in memory, the instruction that caused the fourth write is
not traced, although subsequent instructions are. This is because the use of a counter in
the TraceEnable configuration always results in imprecise tracing.

Index See Cache index.

Index register A register specified in some load or store instructions. The value of this register is used
as an offset to be added to or subtracted from the base register value to form the virtual
address that is sent to memory. Some addressing modes optionally enable the index
register value to be shifted prior to the addition or subtraction.

Infinity In the IEEE 754 standard format to represent infinity, the exponent is the maximum for
the precision and the fraction is all zeros.

Input exception A VFP exception condition in which one or more of the operands for a given operation
are not supported by the hardware. The operation bounces to support code for
processing.

Instruction cache A block of on-chip fast access memory locations, situated between the processor and
main memory, used for storing and retrieving copies of often used instructions. This is
done to greatly increase the average speed of memory accesses and so improve
processor performance.

Instruction cycle count
The number of cycles that an instruction occupies the Execute stage of the pipeline.
Glossary-18 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
Instruction Memory Barrier (IMB)
An operation to ensure that the prefetch buffer is flushed of all out-of-date instructions.

Instrumentation trace
A component for debugging real-time systems through a simple memory-mapped trace
interface, providing printf style debugging.

Intelligent Energy Management (IEM)
A technology that enables dynamic voltage scaling and clock frequency variation to be
used to reduce power consumption in a device.

Intermediate result An internal format used to store the result of a calculation before rounding. This format
can have a larger exponent field and fraction field than the destination format.

Internal scan chain A series of registers connected together to form a path through a device, used during
production testing to import test patterns into internal nodes of the device and export the
resulting values.

Interrupt handler A program that control of the processor is passed to when an interrupt occurs.

Interrupt vector One of a number of fixed addresses in low memory, or in high memory if high vectors
are configured, that contains the first instruction of the corresponding interrupt handler.

Invalidate To mark a cache line as being not valid by clearing the valid bit. This must be done
whenever the line does not contain a valid cache entry. For example, after a cache flush
all lines are invalid.

Joint Test Action Group (JTAG)
The name of the organization that developed standard IEEE 1149.1. This standard
defines a boundary-scan architecture used for in-circuit testing of integrated circuit
devices. It is commonly known by the initials JTAG.

JTAG See Joint Test Action Group.

JTAG Access Port (JTAG-AP)
An optional component of the DAP that provides JTAG access to on-chip components,
operating as a JTAG master port to drive JTAG chains throughout a SoC.

JTAG-AP See JTAG Access Port.

JTAG Debug Port (JTAG-DP)
An optional external interface for the DAP that provides a standard JTAG interface for
debug access.

JTAG-DP See JTAG Debug Port.

LE Little endian view of memory in both byte-invariant and word-invariant systems. See
also Byte-invariant, Word-invariant.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-19
Unrestricted Access Non-Confidential

Glossary
Line See Cache line.

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored
at increasing addresses in memory.

See also Big-endian and Endianness.

Little-endian memory
Memory in which:

• a byte or halfword at a word-aligned address is the least significant byte or
halfword within the word at that address

• a byte at a halfword-aligned address is the least significant byte within the
halfword at that address.

See also Big-endian memory.

Load/store architecture
A processor architecture where data-processing operations only operate on register
contents, not directly on memory contents.

Load Store Unit (LSU)
The part of a processor that handles load and store transfers.

LSU See Load Store Unit.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system
comprises several macrocells (such as a processor, an ETM, and a memory block) plus
application-specific logic.

Memory bank One of two or more parallel divisions of interleaved memory, usually one word wide,
that enable reads and writes of multiple words at a time, rather than single words. All
memory banks are addressed simultaneously and a bank enable or chip select signal
determines which of the banks is accessed for each transfer. Accesses to sequential
word addresses cause accesses to sequential banks. This enables the delays associated
with accessing a bank to occur during the access to its adjacent bank, speeding up
memory transfers.

Memory coherency A memory is coherent if the value read by a data read or instruction fetch is the value
that was most recently written to that location. Memory coherency is made difficult
when there are multiple possible physical locations that are involved, such as a system
that has main memory, a write buffer and a cache.

Memory Management Unit (MMU)
Hardware that controls caches and access permissions to blocks of memory, and
translates virtual addresses to physical addresses.
Glossary-20 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
Memory Protection Unit (MPU)
Hardware that controls access permissions to blocks of memory. Unlike an MMU, an
MPU does not translate virtual addresses to physical addresses.

Microprocessor See Processor.

Miss See Cache miss.

MMU See Memory Management Unit.

Model Manager A software control manager that handles the event transactions between the model and
simulator.

Modified Virtual Address (MVA)
A Virtual Address produced by the ARM processor can be changed by the current
Process ID to provide a Modified Virtual Address (MVA) for the MMUs and caches.

See also Fast Context Switch Extension.

Monitor debug-mode
One of two mutually exclusive debug modes. In Monitor debug-mode a debug event,
such as a breakpoint or a watchpoint, causes a debug exception, generating either a
Prefetch Abort exception or a Data Abort exception.

See also Halting debug-mode.

Mono-DAP See Mono Debug Access Port.

Mono Debug Access Port (Mono-DAP)
A JTAG to APB bridge that supports the JTAG programming model for access to the
ETM or ETB using the existing scan chain.

Mono-TPIU See Mono Trace Port Interface Unit.

Mono Trace Port Interface Unit (Mono-TPIU)
A cut down TPIU for tracing a single source that supports backwards-compatible
programming of PortSize.

MPU See Memory Protection Unit.

Multi-ICE A JTAG-based tool for debugging embedded systems.

Multi-layer An interconnect scheme similar to a cross-bar switch. Each master on the interconnect
has a direct link to each slave, The link is not shared with other masters. This enables
each master to process transfers in parallel with other masters. Contention only occurs
in a multi-layer interconnect at a payload destination, typically the slave.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-21
Unrestricted Access Non-Confidential

Glossary
Multi-master AHB Typically a shared, not multi-layer, AHB interconnect scheme. More than one master
connects to a single AMBA AHB link. In this case, the bus is implemented with a set of
full AMBA AHB master interfaces. Masters that use the AMBA AHB-Lite protocol
must connect through a wrapper to supply full AMBA AHB master signals to support
multi-master operation.

MVA See Modified Virtual Address.

NaN Not a number. A symbolic entity encoded in a floating-point format that has the
maximum exponent field and a nonzero fraction. An SNaN causes an invalid operand
exception if used as an operand and a most significant fraction bit of zero. A QNaN
propagates through almost every arithmetic operation without signaling exceptions and
has a most significant fraction bit of one.

PA See Physical Address.

Penalty The number of cycles in which no useful Execute stage pipeline activity can occur
because an instruction flow is different from that assumed or predicted.

Potentially exceptional instruction
An instruction that is determined, based on the exponents of the operands and the sign
bits, to have the potential to produce an overflow, underflow, or invalid condition. After
this determination is made, the instruction that has the potential to cause an exception
causes the VFP11 coprocessor to enter the exceptional state and bounce the next trigger
instruction issued.

See also Bounce, Trigger instruction, and Exceptional state.

Power-on reset See Cold reset.

Prefetching In pipelined processors, the process of fetching instructions from memory to fill up the
pipeline before the preceding instructions have finished executing. Prefetching an
instruction does not mean that the instruction has to be executed.

Prefetch Abort An indication from a memory system to the processor that an instruction has been
fetched from an illegal memory location. An exception must be taken if the processor
attempts to execute the instruction. A Prefetch Abort can be caused by the external or
internal memory system as a result of attempting to access invalid instruction memory.

See also Data Abort, External Abort and Abort.

Processor A processor is the circuitry in a computer system required to process data using the
computer instructions. It is an abbreviation of microprocessor. A clock source, power
supplies, and main memory are also required to create a minimum complete working
computer system.
Glossary-22 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
Programming Language Interface (PLI)
For Verilog simulators, an interface by which so-called foreign code (code written in a
different language) can be included in a simulation.

Physical Address (PA)
The MMU performs a translation on Modified Virtual Addresses (MVA) to produce the
Physical Address (PA) that is given to the AMBA bus to perform an external access. The
PA is also stored in the data cache to avoid the necessity for address translation when
data is cast out of the cache.

See also Fast Context Switch Extension.

Read Reads are defined as memory operations that have the semantics of a load. That is, the
ARM instructions LDM, LDRD, LDC, LDR, LDRT, LDRSH, LDRH, LDRSB, LDRB,
LDRBT, LDREX, RFE, STREX, SWP, and SWPB, and the Thumb instructions LDM,
LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

Java bytecodes that are accelerated by hardware can cause a number of reads to occur,
according to the state of the Java stack and the implementation of the Java hardware
acceleration.

RealView ICE A system for debugging embedded processor cores that uses a JTAG interface.

Region A partition of instruction or data memory space.

Remapping Changing the address of physical memory or devices after the application has started
executing. This is typically done to permit RAM to replace ROM when the initialization
has been completed.

Replicator A replicator enables two trace sinks to be wired together and to operate independently
on the same incoming trace stream. The input trace stream is output onto two
(independent) ATB ports.

Reserved A field in a control register or instruction format is reserved if the field is to be defined
by the implementation, or produces Unpredictable results if the contents of the field are
not zero. These fields are reserved for use in future extensions of the architecture or are
implementation-specific. All reserved bits not used by the implementation must be
written as 0 and read as 0.

Rounding mode The IEEE 754 standard requires all calculations to be performed as if to an infinite
precision. For example, a multiply of two single-precision values must accurately
calculate the significand to twice the number of bits of the significand. To represent this
value in the destination precision, rounding of the significand is often required. The
IEEE 754 standard specifies four rounding modes.

In round-to-nearest mode, the result is rounded at the halfway point, with the tie case
rounding up if it would clear the least significant bit of the significand, making it even.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-23
Unrestricted Access Non-Confidential

Glossary
Round-towards-zero mode chops any bits to the right of the significand, always
rounding down, and is used by the C, C++, and Java languages in integer conversions.

Round-towards-plus-infinity mode and round-towards-minus-infinity mode are used in
interval arithmetic.

RunFast mode In RunFast mode, hardware handles exceptional conditions and special operands.
RunFast mode is enabled by enabling default NaN and flush-to-zero modes and
disabling all exceptions. In RunFast mode, the VFP11 coprocessor does not bounce to
the support code for any legal operation or any operand, but supplies a result to the
destination. For all inexact and overflow results and all invalid operations that result
from operations not involving NaNs, the result is as specified by the IEEE 754 standard.
For operations involving NaNs, the result is the default NaN.

Saved Program Status Register (SPSR)
The register that holds the CPSR of the task immediately before the exception occurred
that caused the switch to the current mode.

SBO See Should Be One.

SBZ See Should Be Zero.

SBZP See Should Be Zero or Preserved.

Scalar operation A VFP coprocessor operation involving a single source register and a single destination
register.

See also Vector operation.

Scan Access Port (Scan-AP)
An optional component of the DAP that provides test access to on-chip scan chains.

Scan-AP See Scan Access Port.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan
technology using a standard JTAG TAP interface. Each device contains at least one TAP
controller containing shift registers that form the chain connected between TDI and
TDO, through which test data is shifted. Processors can contain several shift registers
to enable you to access selected parts of the device.

SCREG The currently selected scan chain number in an ARM TAP controller.

SDF See Standard Delay Format.

Serial-Wire Debug Port
An optional external interface for the DAP that provides a single-wire bidirectional
debug interface.
Glossary-24 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
Serial-Wire JTAG (SWJ)
A model whereby a run-control emulator (based on RVI-ME) is placed in the chip and
communicated with using a single pin scheme (compared to the four to six for JTAG).
This not only reduces pins, but SWJ provides power from the run-control emulator
(through the pin). It also provides additional access and a unique ID. The use of this
DBT model enables this mode to run very fast for download.

Set See Cache set.

Set-associative cache
In a set-associative cache, lines can only be placed in the cache in locations that
correspond to the modulo division of the memory address by the number of sets. If there
are n ways in a cache, the cache is termed n-way set-associative. The set-associativity
can be any number greater than or equal to 1 and is not restricted to being a power of
two.

Short vector operation
A VFP coprocessor operation involving more than one destination register and perhaps
more than one source register in the generation of the result for each destination.

Should Be One (SBO)
Write as 1, or all 1s for bit fields, by software. Writing as 0 produces Unpredictable
results.

Should Be Zero (SBZ)
Write as 0, or all 0s for bit fields, by software. Writing as 1 produces Unpredictable
results.

Should Be Zero or Preserved (SBZP)
Write as 0, or all 0s for bit fields, by software, or preserved by writing the same value
back that has been previously read from the same field on the same processor.

Significand The component of a binary floating-point number that consists of an explicit or implicit
leading bit to the left of the implied binary point and a fraction field to the right.

Sign-Off Model (SOM)
An opaque, compiled simulation model generated from a technology specific netlist of
an ARM processor, derived after gate level synthesis and timing annotation, that you
can use in back-annotated gate-level simulations to prove the function and timing
behavior of the device. It enables accurate timing simulation of SoCs and simulation
using production test vectors from Automatic Test Pattern Generation (ATPG) tool such
as Synopsys TetraMAX. It only supports back-annotation using SDF files. The SOM
includes timing information but provides slower simulation than a DSM.

SOM See Sign-Off Model.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-25
Unrestricted Access Non-Confidential

Glossary
SPICE Simulation Program with Integrated Circuit Emphasis. An accurate transistor-level
electronic circuit simulation tool that can predict how an equivalent real circuit behaves
for given circuit conditions.

SPSR See Saved Program Status Register

Standard Delay Format (SDF)
The format of a file that contains timing information to the level of individual bits of
buses and is used in SDF back-annotation. An SDF file can be generated in a number
of ways, but most commonly from a delay calculator.

Stride The stride field, FPSCR[21:20], specifies the increment applied to register addresses in
short vector operations. A stride of 00, specifying an increment of +1, causes a short
vector operation to increment each vector register by +1 for each iteration, while a stride
of 11 specifies an increment of +2.

Subnormal value A value in the range (–2Emin < x < 2Emin), except for ±0. In the IEEE 754 standard
format for single-precision and double-precision operands, a subnormal value has a
zero exponent and a nonzero fraction field. The IEEE 754 standard requires that the
generation and manipulation of subnormal operands be performed with the same
precision as normal operands.

Support code Software that you must use to complement the hardware and provide compatibility with
the IEEE 754 standard. The support code has a library of routines that perform
supported functions, such as divide with unsupported inputs or inputs that might
generate an exception in addition to operations beyond the scope of the hardware. The
support code has a set of exception handlers to process exceptional conditions in
compliance with the IEEE 754 standard.

SW-DP See Single-Wire Debug Port.

SWJ See Single-Wire JTAG.

Synchronization primitive
The memory synchronization primitive instructions are those instructions that are used
to ensure memory synchronization. That is, the LDREX, STREX, SWP, and SWPB
instructions.

Tag The upper portion of a block address used to identify a cache line within a cache. The
block address from the CPU is compared with each tag in a set in parallel to determine
if the corresponding line is in the cache. If it is, it is said to be a cache hit and the line
can be fetched from cache. If the block address does not correspond to any of the tags,
it is said to be a cache miss and the line must be fetched from the next level of memory.

See also Cache terminology diagram on the last page of this glossary.

TAP See Test access port.
Glossary-26 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
TCD See Trace Capture Device.

TCM See Tightly coupled memory.

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output
and control interface to a JTAG boundary-scan architecture. The mandatory terminals
are TDI, TDO, TMS, and TCK. The optional terminal is TRST. This signal is
mandatory in ARM cores because it is used to reset the debug logic.

Thumb instruction A halfword that specifies an operation for an ARM processor in Thumb state to
perform. Thumb instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) halfword aligned instructions is operating
in Thumb state.

Tightly coupled memory (TCM)
An area of low latency memory that provides predictable instruction execution or data
load timing in cases where deterministic performance is required. TCMs are suited to
holding:

• critical routines such as for interrupt handling

• scratchpad data

• data types whose locality is not suited to caching

• critical data structures, such as interrupt stacks.

Tiny A nonzero result or value that is between the positive and negative minimum normal
values for the destination precision.

TLB See Translation Look-aside Buffer.

TPA See Trace Port Analyzer.

TPIU See Trace Port Interface Unit.

Trace Capture Device (TCD)
A generic term to describe Trace Port Analyzers, logic analyzers, and on-chip trace
buffers.

Trace driver A Remote Debug Interface target that controls a piece of trace hardware. That is, the
trigger macrocell, trace macrocell, and trace capture tool.

Trace funnel A device that combines multiple trace sources onto a single bus.

Trace hardware A term for a device that contains an Embedded Trace Macrocell.

Trace port A port on a device, such as a processor or ASIC, used to output trace information.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-27
Unrestricted Access Non-Confidential

Glossary
Trace Port Analyzer (TPA)
A hardware device that captures trace information output on a trace port. This can be a
low-cost product designed specifically for trace acquisition, or a logic analyzer.

Trace Port Interface Unit (TPIU)
Drains trace data and acts as a bridge between the on-chip trace data and the data stream
captured by a TPA.

Translation Lookaside Buffer (TLB)
A cache of recently used page table entries that avoid the overhead of page table
walking on every memory access. Part of the Memory Management Unit.

Translation table A table, held in memory, that contains data that defines the properties of memory areas
of various fixed sizes.

Translation table walk
The process of doing a full translation table lookup. It is performed automatically by
hardware.

Trap An exceptional condition in a VFP coprocessor that has the respective exception enable
bit set in the FPSCR register. The user trap handler is executed.

Trigger instruction The VFP coprocessor instruction that causes a bounce at the time it is issued. A
potentially exceptional instruction causes the VFP11 coprocessor to enter the
exceptional state. A subsequent instruction, unless it is an FMXR or FMRX instruction
accessing the FPEXC, FPINST, or FPSID register, causes a bounce, beginning
exception processing. The trigger instruction is not necessarily exceptional, and no
processing of it is performed. It is retried at the return from exception processing of the
potentially exceptional instruction.

See also Bounce, Potentially exceptional instruction, and Exceptional state.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines
the data size is said to be unaligned. For example, a word stored at an address that is not
divisible by four.

Undefined Indicates an instruction that generates an Undefined instruction trap. See the ARM
Architecture Reference Manual for more information about ARM exceptions.

UNP See Unpredictable.

Unpredictable Means that the behavior of the ETM cannot be relied on. Such conditions have not been
validated. When applied to the programming of an event resource, only the output of
that event resource is Unpredictable.

Unpredictable behavior can affect the behavior of the entire system, because the ETM
is capable of causing the processor to enter debug state, and external outputs can be used
for other purposes.
Glossary-28 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
Unpredictable For reads, the data returned when reading from this location is unpredictable. It can have
any value. For writes, writing to this location causes unpredictable behavior, or an
unpredictable change in device configuration. Unpredictable instructions must not halt
or hang the processor, or any part of the system.

Unsupported values
Specific data values that are not processed by the VFP coprocessor hardware but
bounced to the support code for completion. These data can include infinities, NaNs,
subnormal values, and zeros. An implementation is free to select which of these values
is supported in hardware fully or partially, or requires assistance from support code to
complete the operation. Any exception resulting from processing unsupported data is
trapped to user code if the corresponding exception enable bit for the exception is set.

VA See Virtual Address.

Vector operation A VFP coprocessor operation involving more than one destination register, perhaps
involving different source registers in the generation of the result for each destination.

See also Scalar operation.

Victim A cache line, selected to be discarded to make room for a replacement cache line that is
required because of a cache miss. The way that the victim is selected for eviction is
processor-specific. A victim is also known as a cast out.

Virtual Address (VA)
The MMU uses its page tables to translate a Virtual Address into a Physical Address.
The processor executes code at the Virtual Address, that might be located elsewhere in
physical memory.

See also Fast Context Switch Extension, Modified Virtual Address, and Physical
Address.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug
controller and debug logic. This type of reset is useful if you are using the debugging
features of a processor.

Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when
the data contained by a particular memory address is changed. Watchpoints are inserted
by the programmer to enable inspection of register contents, memory locations, and
variable values when memory is written to test that the program is operating correctly.
Watchpoints are removed after the program is successfully tested. See also Breakpoint.

Way See Cache way.

WB See Write-back.

Word A 32-bit data item.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-29
Unrestricted Access Non-Confidential

Glossary
Word-invariant In a word-invariant system, the address of each byte of memory changes when
switching between little-endian and big-endian operation, in such a way that the byte
with address A in one endianness has address A EOR 3 in the other endianness. As a
result, each aligned word of memory always consists of the same four bytes of memory
in the same order, regardless of endianness. The change of endianness occurs because
of the change to the byte addresses, not because the bytes are rearranged.

The ARM architecture supports word-invariant systems in ARMv3 and later versions.
When word-invariant support is selected, the behavior of load or store instructions that
are given unaligned addresses is instruction-specific, and is in general not the expected
behavior for an unaligned access. It is recommended that word-invariant systems use
the endianness that produces the required byte addresses at all times, apart possibly
from very early in their reset handlers before they have set up the endianness, and that
this early part of the reset handler must use only aligned word memory accesses.

See also Byte-invariant.

Write Writes are defined as operations that have the semantics of a store. That is, the ARM
instructions SRS, STM, STRD, STC, STRT, STRH, STRB, STRBT, STREX, SWP, and
SWPB, and the Thumb instructions STM, STR, STRH, STRB, and PUSH.

Java bytecodes that are accelerated by hardware can cause a number of writes to occur,
according to the state of the Java stack and the implementation of the Java hardware
acceleration.

Write-back (WB) In a write-back cache, data is only written to main memory when it is forced out of the
cache on line replacement following a cache miss. Otherwise, writes by the processor
only update the cache. This is also known as copyback.

Write buffer A block of high-speed memory, arranged as a FIFO buffer, between the data cache and
main memory, whose purpose is to optimize stores to main memory.

Write completion The memory system indicates to the processor that a write has been completed at a point
in the transaction where the memory system is able to guarantee that the effect of the
write is visible to all processors in the system. This is not the case if the write is
associated with a memory synchronization primitive, or is to a Device or Strongly
Ordered region. In these cases the memory system might only indicate completion of
the write when the access has affected the state of the target, unless it is impossible to
distinguish between having the effect of the write visible and having the state of target
updated.

This stricter requirement for some types of memory ensures that any side-effects of the
memory access can be guaranteed by the processor to have taken place. You can use this
to prevent the starting of a subsequent operation in the program order until the
side-effects are visible.
Glossary-30 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

Glossary
Write-through (WT) In a write-through cache, data is written to main memory at the same time as the cache
is updated.

WT See Write-through.

XVC See eXtensible Verification Component.

XVC Test Scenario Manager
This co-ordinates the operation of multiple XVCs.

See also eXtensible Verification Component

XTSM See XVC Test Scenario Manager.

Cache terminology diagram
The figure on illustrates the following cache terminology:

• block address

• cache line

• cache set

• cache way

• index

• tag.
ARM DDI 0360F Copyright © 2005, 2006, 2008. All rights reserved. Glossary-31
Unrestricted Access Non-Confidential

Glossary
Block address

Tag
Tag

Tag

Tag Index Word

Hit
(way number)

Read data
(way that corresponds)

=

3
1

Tag

0

0

2
1

3
4
5
6
7

n

Byte

Cache way Cache set

m 12 0

Cache line

2

Line number
Word number

Cache tag RAM Cache data
RAM
Glossary-32 Copyright © 2005, 2006, 2008. All rights reserved. ARM DDI 0360F
Non-Confidential Unrestricted Access

	Contents
	List of Tables
	List of Figures
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Conventions
	Typographical
	Timing diagrams
	Signals

	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on this product
	Feedback on this book

	Introduction
	1.1 About the processor
	1.2 Extensions to ARMv6
	1.3 MP11 CPU overview
	1.3.1 Integer core
	Instruction set categories
	Conditional execution
	Registers
	Modes and exceptions
	Thumb instruction set
	DSP instructions
	Media extensions
	Datapath
	Branch prediction
	Return stack

	1.3.2 Load Store Unit (LSU)
	1.3.3 Prefetch unit
	1.3.4 Memory system
	Instruction and data caches
	Cache power consumption reduction
	Store buffer
	Memory Management Unit

	1.4 Debug and programming support
	1.4.1 Debug
	System performance monitoring
	Real-time debug facilities
	Debug environment

	1.4.2 Vector Floating-Point (VFP)
	IEEE754 compliance
	Flush-to-zero mode
	Operations not supported

	1.4.3 System control
	1.4.4 Interrupt handling
	Exception processing enhancements
	Interrupt generation enhancements

	1.5 Power management
	1.6 Configurable options
	1.7 Pipeline stages
	1.8 Typical pipeline operations
	1.8.1 Instruction progression

	1.9 MPCore architecture with Jazelle technology
	1.9.1 Instruction compression
	1.9.2 The Thumb instruction set
	1.9.3 Java bytecodes

	1.10 Parity checking support
	1.11 Product revisions

	Programmers Model
	2.1 About the programmers model
	2.2 Processor operating states
	2.2.1 Switching state
	2.2.2 Interworking ARM and Thumb state

	2.3 Instruction length
	2.4 Data types
	2.5 Memory formats
	2.5.1 32-bit byte-invariant BE-8 format
	2.5.2 Little-endian format

	2.6 Addresses in an MPCore system
	2.7 Operating modes
	2.8 Registers
	2.8.1 The ARM state register set
	2.8.2 The Thumb state register set
	2.8.3 Accessing high registers in Thumb state
	2.8.4 ARM state and Thumb state registers relationship

	2.9 The program status registers
	2.9.1 The condition code flags
	2.9.2 The Q flag
	2.9.3 The J bit
	2.9.4 The GE[3:0] bits
	2.9.5 The E bit
	2.9.6 The A bit
	2.9.7 The control bits
	Interrupt disable bits
	T bit
	Mode bits

	2.9.8 Modification of PSR bits by MSR instructions
	2.9.9 Reserved bits

	2.10 Exceptions
	2.10.1 New instructions for exception handling
	Store Return State (SRS)
	Return From Exception (RFE)
	Change Processor State (CPS)

	2.10.2 Exception entry and exit summary
	2.10.3 Entering an ARM exception
	2.10.4 Leaving an ARM exception
	2.10.5 Reset
	2.10.6 Fast interrupt request
	2.10.7 Interrupt request
	2.10.8 Aborts
	Prefetch Abort
	Data Abort

	2.10.9 Imprecise Data Abort mask in the CPSR/SPSR
	2.10.10 Software interrupt instruction
	2.10.11 Undefined instruction
	2.10.12 Breakpoint instruction
	2.10.13 Exception vectors
	2.10.14 Exception priorities

	Control Coprocessor CP15
	3.1 About control coprocessor CP15
	3.1.1 Accessing CP15 registers

	3.2 CP15 registers arranged by function
	3.3 Summary of control coprocessor CP15 registers and operations
	3.4 Register descriptions
	3.4.1 c0, Main ID Register
	3.4.2 c0, Cache Type Register
	3.4.3 c0, TLB Type Register
	3.4.4 c0, CPU ID Register
	3.4.5 c0, Feature registers
	Processor Feature Register 0, ID_PFR0
	Processor Feature Register 1, ID_PFR1
	Debug Feature Register 0, ID_DFR0
	Memory Model Features Register 0, ID_MMFR0
	Memory Model Feature Register 1 (ID_MMFR1)
	Memory Model Feature Register 2 (ID_MMFR2)
	Memory Model Feature Register 3 (ID_MMFR3)

	3.4.6 c0, Instruction Set Attributes Registers
	Instruction Set Attributes Register 0 (ID_ISAR0)
	Instruction Set Attributes Register 1 (ID_ISAR1)
	Instruction Set Attributes Register 2 (ID_ISAR2)
	Instruction Set Attributes Register 3 (ID_ISAR3)
	Instruction Set Attributes Register 4 (ID_ISAR4)

	3.4.7 c1, Control Register
	3.4.8 c1, Auxiliary Control Register
	AMP mode and SMP mode

	3.4.9 c1, Coprocessor Access Control Register
	3.4.10 c2, Translation Table Base Register 0
	3.4.11 c2, Translation Table Base Register 1
	3.4.12 c2, Translation Table Base Control Register
	3.4.13 c3, Domain Access Control Register
	3.4.14 c5, Data Fault Status Register
	3.4.15 c5, Instruction Fault Status Register
	3.4.16 c6, Fault Address Register
	3.4.17 c6, Watchpoint Fault Address Register
	3.4.18 c7, Cache Operations Register
	Set/Way format
	Modified Virtual Address (MVA) format
	Invalidate, Clean, and Clean and Invalidate, Entire Data Cache operations
	User access to CP15 c7 operations

	3.4.19 c7, VA to PA operations
	VA to PA Translation Register
	PA Register

	3.4.20 c8, TLB Operations Register
	Invalidate TLB
	Invalidate TLB Single Entry
	Invalidate TLB Entries on ASID Match
	Invalidate TLB entries on MVA only

	3.4.21 c9, Data Cache Lockdown Register
	3.4.22 c10, TLB Lockdown Register
	3.4.23 c10, Memory Region Remap Registers
	3.4.24 c13, FCSE PID Register
	Changing the ProcID, performing a fast context switch

	3.4.25 c13, Context ID Register
	3.4.26 c13, Thread ID registers
	3.4.27 c15, Performance Monitor Control Register (PMNC)
	3.4.28 c15, Cycle Counter Register (CCNT)
	3.4.29 c15, Count Register 0 (PMN0) and Count Register 1 (PMN1)
	3.4.30 c15, TLB Debug Control Register
	TLB Debug Control Register

	3.4.31 c15, TLB lockdown operations

	3.5 Summary of CP15 instructions

	Unaligned and Mixed-Endian Data Access Support
	4.1 About unaligned and mixed-endian support
	4.2 Unaligned access support
	4.2.1 Word-invariant mode support
	4.2.2 ARMv6 extensions
	4.2.3 Word-invariant mode and ARMv6 configurations
	4.2.4 Word-invariant data access in ARMv6 (U=0)
	4.2.5 Support for unaligned data access in ARMv6 (U=1)
	4.2.6 ARMv6 unaligned data access restrictions

	4.3 Unaligned data access specification
	4.3.1 Load unsigned byte, endian independent
	4.3.2 Load signed byte, endian independent
	4.3.3 Store byte, endian independent
	4.3.4 Load unsigned halfword, little-endian
	4.3.5 Load unsigned halfword, big-endian
	4.3.6 Load signed halfword, little-endian
	4.3.7 Load signed halfword, big-endian
	4.3.8 Store halfword, little-endian
	4.3.9 Store halfword, big-endian
	4.3.10 Load word, little-endian
	4.3.11 Load word, big-endian
	4.3.12 Store word, little-endian
	4.3.13 Store word, big-endian
	4.3.14 Load double, load multiple, load coprocessor (little-endian, E = 0)
	4.3.15 Load double, load multiple, load coprocessor (big-endian, E=1)
	4.3.16 Store double, store multiple, store coprocessor (little-endian, E=0)
	4.3.17 Store double, store multiple, store coprocessor (big-endian, E=1)

	4.4 Operation of unaligned accesses
	4.5 Mixed-endian access support
	4.5.1 ARMv6 support for mixed-endian data
	Fixed little-endian Instructions
	Mixed-endian data access

	4.5.2 Reset values of the EE, U, and E bits

	4.6 Instructions to reverse bytes in a general-purpose register
	4.6.1 All load and store operations

	4.7 Instructions to change the CPSR E bit

	Memory Management Unit
	5.1 About the MMU
	5.2 TLB organization
	5.2.1 MicroTLB
	5.2.2 Main TLB
	Main TLB implementation
	Main TLB misses

	5.2.3 TLB control operations
	5.2.4 Page-based attributes
	5.2.5 Coherency
	5.2.6 Supersections

	5.3 Memory access sequence
	5.3.1 TLB match process

	5.4 Enabling and disabling the MMU
	5.4.1 Enabling the MMU
	5.4.2 Disabling the MMU

	5.5 Memory access control
	5.5.1 Domains
	5.5.2 Access permissions
	5.5.3 Execute never bits
	5.5.4 Access permission and ForceAP bit
	Access Bit

	5.6 Memory region attributes
	5.6.1 C and B bit, and type extension field encodings
	5.6.2 Shared
	5.6.3 Page table descriptors when using remapping

	5.7 Memory attributes and types
	5.7.1 Normal memory attribute
	Shared Normal memory
	Non-Shared Normal memory
	Cachable Write-Through, Cachable Write-Back, and Noncachable

	5.7.2 Device memory attribute
	Shared memory attribute

	5.7.3 Strongly Ordered memory attribute
	5.7.4 Ordering requirements for memory accesses
	Ordering requirements for two accesses
	Definition of program order of memory accesses

	5.7.5 Explicit memory barriers
	Data Memory Barrier
	Data Synchronization Barrier
	Flush Prefetch Buffer
	Memory synchronization primitives

	5.7.6 Backwards compatibility

	5.8 MMU aborts
	5.8.1 External aborts
	External abort on instruction fetch
	External abort on data read/write
	External abort on a hardware page table walk

	5.9 MMU fault checking
	5.9.1 Fault checking sequence
	5.9.2 Alignment fault
	5.9.3 Translation fault
	5.9.4 Access bit fault
	5.9.5 Domain fault
	5.9.6 Permission fault
	5.9.7 Debug event

	5.10 Fault status and address
	5.11 Hardware page table translation
	5.11.1 Backwards-compatible page table translation (subpage AP bits enabled)
	Backwards-compatible page table format

	5.11.2 ARMv6 page table translation subpage AP bits disabled
	ARMv6 page table format

	5.11.3 Restrictions on page table mappings for the instruction cache

	5.12 MMU descriptors
	5.12.1 First-level descriptor address
	5.12.2 First-level descriptor
	First-level translation fault
	First-level page table address
	First-level section base address

	5.12.3 Second-level page table walk
	Second-level translation fault
	Second-level large page base address
	Second-level small page table walk
	Second-level extended small page table walk

	5.13 MMU software-accessible registers
	5.14 MMU and Write Buffer

	Program Flow Prediction
	6.1 About program flow prediction
	6.2 Branch prediction
	6.2.1 Enabling program flow prediction
	6.2.2 Dynamic branch predictor
	6.2.3 Static branch predictor
	6.2.4 Branch folding
	6.2.5 Incorrect predictions and correction

	6.3 Return stack
	6.4 Memory Barriers
	6.4.1 Instruction Memory Barriers (IMBs)

	Level 1 Memory System
	7.1 Coherency protocol
	7.1.1 Optimizations

	7.2 About the Level 1 data side memory system
	7.2.1 Slots Unit
	7.2.2 Noncachable accesses
	7.2.3 Locked accesses
	7.2.4 External Aborts handling
	7.2.5 MicroTLB
	7.2.6 Cache arbiter
	Tag RAM
	Dirty RAM
	Data RAM

	7.2.7 Store buffer
	7.2.8 Linefill buffers
	7.2.9 DDI buffer
	7.2.10 Eviction buffer

	7.3 About the Level 1 instruction side memory system
	7.4 TLB organization
	7.4.1 MicroTLB
	7.4.2 Main TLB
	Memory access sequence
	TLB match process

	Level 2 Memory System
	8.1 MPCore Level 2 interface
	8.1.1 MPCore Level 2 interface overview
	Supported AXI transfers

	8.1.2 AXI transaction IDs
	8.1.3 Using the STRT instruction

	8.2 L2 exclusive mode
	8.3 Synchronization operations
	8.3.1 Exclusive loads and stores

	8.4 The ACLKEN signal

	MPCore Private Memory Region
	9.1 About the MPCore private memory region
	9.1.1 SCU-specific registers
	9.1.2 SCU Control Register
	9.1.3 SCU Configuration Register
	9.1.4 SCU CPU Status Register
	9.1.5 SCU Invalidate All Register
	9.1.6 Performance Monitor Control Register
	9.1.7 Performance monitor event registers
	Performance Monitor Event Register 0
	Performance Monitor Event Register 1

	9.1.8 Count registers, MN0-MN7

	9.2 Timer and watchdog blocks
	9.2.1 Calculating timer intervals
	9.2.2 Timer and watchdog registers
	9.2.3 Timer Load Register, 0x00
	9.2.4 Timer Counter Register, 0x04
	9.2.5 Timer Control Register, 0x08
	9.2.6 Timer Interrupt Status Register, 0x0C
	9.2.7 Watchdog Load Register, 0x20
	9.2.8 Watchdog Counter Register, 0x24
	9.2.9 Watchdog Control Register, 0x28
	9.2.10 Watchdog Interrupt Status Register, 0x2C
	9.2.11 Watchdog Reset Status Register, 0x30
	9.2.12 Watchdog Disable Register, 0x34

	MPCore Distributed Interrupt Controller
	10.1 About the Distributed Interrupt Controller
	10.1.1 Distributed Interrupt Controller clock frequency

	10.2 Terminology
	10.3 Interrupt Distributor
	10.3.1 Interrupt Distributor overview
	10.3.2 Behavior of the Interrupt Distributor

	10.4 CPU interrupt interfaces
	10.5 Interrupt Distributor Registers
	10.5.1 Interrupt Distributor Control Register, 0x000
	10.5.2 Interrupt Controller Type Register, 0x004
	10.5.3 Interrupt Enable clear and Enable set registers, 0x100-0x11C and 0x180-0x19C
	10.5.4 Interrupt Pending clear and Pending set registers, 0x200-0x21C and 0x280-0x29C
	10.5.5 Active Bit Registers, 0x300-0x31C
	10.5.6 Interrupt Priority Registers, 0x400-0x4FC
	10.5.7 Interrupt CPU Targets Registers, 0x800-0x8FC
	10.5.8 Interrupt Configuration Registers, 0xC00-0xC3C
	10.5.9 Interrupt Line Level Registers, 0xD00-0xD1C
	10.5.10 Software Interrupt Register, 0xF00

	10.6 CPU Interrupt Interface Registers
	10.6.1 CPU Interface Control Register, 0x00
	10.6.2 Priority Mask Register, 0x04
	10.6.3 Binary Point Register, 0x08
	10.6.4 Interrupt Acknowledge Register, 0x0C
	10.6.5 End of Interrupt (EOI) Register, 0x10
	10.6.6 Running Priority Register, 0x14
	10.6.7 Highest Pending Interrupt Register, 0x18

	Clocking, Resets, and Power Management
	11.1 Clocking
	11.1.1 Synchronous clocking

	11.2 Reset
	11.3 Reset modes
	11.3.1 Power-on reset
	11.3.2 Individual power-on reset
	11.3.3 Soft reset
	11.3.4 DBGTAP reset
	11.3.5 Normal operation

	11.4 About power consumption control
	11.5 Individual MP11 CPU power control
	11.5.1 Run mode
	11.5.2 Wait For Interrupt (WFI/WFE) mode
	11.5.3 Dormant mode
	11.5.4 Shutdown mode
	11.5.5 Communication to the Power Management Controller

	11.6 IEM support
	11.6.1 MPCore voltage domains

	11.7 Debug

	Debug
	12.1 Debug systems
	12.1.1 The debug host
	12.1.2 The protocol converter
	12.1.3 The MP11 CPU

	12.2 About the debug unit
	12.2.1 Halting debug-mode debugging
	12.2.2 Monitor debug-mode debugging
	12.2.3 Virtual Addresses and debug
	12.2.4 Programming the debug unit

	12.3 Debug registers
	12.3.1 Accessing debug registers
	12.3.2 CP14 c0, Debug ID Register (DIDR)
	12.3.3 CP14 c1, Debug Status and Control Register (DSCR)
	12.3.4 CP14 c5, Data Transfer Registers (DTR)
	12.3.5 CP14 c7, Vector Catch Register (VCR)
	12.3.6 CP14 c64-c69, Breakpoint Value Registers (BVR)
	12.3.7 CP14 c80-c85, Breakpoint Control Registers (BCR)
	12.3.8 CP14 c96-c97, Watchpoint Value Registers (WVR)
	12.3.9 CP14 c112-c113, Watchpoint Control Registers (WCR)

	12.4 CP14 registers reset
	12.5 CP14 debug instructions
	12.5.1 Executing CP14 debug instructions

	12.6 Debug events
	12.6.1 Software debug event
	12.6.2 External debug request signal
	12.6.3 Halt DBGTAP instruction
	12.6.4 Behavior of the processor on debug events
	12.6.5 Effect of a debug event on CP15 registers

	12.7 Debug exception
	12.8 Debug state
	12.8.1 Behavior of the PC in debug state
	12.8.2 Interrupts
	12.8.3 Exceptions

	12.9 Debug communications channel
	12.10 Debugging in a system with TLBs
	12.11 Monitor debug-mode debugging
	12.11.1 Entering the monitor target
	12.11.2 Setting breakpoints, watchpoints, and vector catch debug events
	Setting a simple breakpoint on an IVA
	Setting a simple breakpoint on a context ID value
	Setting a linked breakpoint
	Setting a simple watchpoint
	Setting a linked watchpoint

	12.11.3 Setting software breakpoint debug events (BKPT)
	12.11.4 Using the debug communications channel

	12.12 Halting debug-mode debugging
	12.12.1 Entering debug state
	12.12.2 Exiting debug state
	12.12.3 Programming debug events
	Setting breakpoints, watchpoints, and vector catch debug events
	Setting software breakpoints (BKPT)
	Reading and writing to memory

	12.13 External signals

	Debug Test Access Port
	13.1 Debug Test Access Port and Halting debug-mode
	13.2 Synchronizing RealView ICE
	13.3 Entering debug state
	13.4 Exiting debug state
	13.5 DBGTAP controller overview
	13.6 Debug registers
	13.6.1 Bypass register
	13.6.2 Device ID code register
	13.6.3 Instruction Register
	13.6.4 Scan chain select register (SCREG)
	13.6.5 Scan chains
	Scan chain 0, Debug ID Register (DIDR)
	Scan chain 1, Debug Status and Control Register (DSCR)
	Scan chain 4, Instruction Transfer Register (ITR)
	Scan chain 5
	Scan chain 7
	Interpreting the PC samples
	Scan chains 8-15
	Scan chains 16-31

	13.6.6 Reset

	13.7 Using the Debug Test Access Port
	13.7.1 Entering and leaving debug state
	13.7.2 Executing instructions in debug state
	13.7.3 Using the ITRsel IR instruction
	13.7.4 Transferring data between the host and the core
	13.7.5 Using the debug communications channel
	13.7.6 Target to host debug communications channel sequence
	13.7.7 Host to target debug communications channel
	13.7.8 Transferring data in debug state
	13.7.9 Example sequences
	Target to host transfer
	Host to target transfer

	13.8 Debug sequences
	13.8.1 Debug macros
	Scan_N <n>
	INTEST
	EXTEST
	ITRsel
	Restart
	INST <instr> [stateout]
	DATA <datain> [<stateout> [dataout]]
	DATAOUT <dataout>
	REQ <address> <data> <nR/W> [<stateout> [dataout]]
	RTI

	13.8.2 General setup
	13.8.3 Forcing the processor to halt
	13.8.4 Entering debug state
	13.8.5 Leaving debug state
	13.8.6 Reading a current mode ARM register in the range r0-r14
	13.8.7 Writing a current mode ARM register in the range r0-r14
	13.8.8 Reading the CPSR/SPSR
	13.8.9 Writing the CPSR/SPSR
	13.8.10 Reading the PC
	13.8.11 Writing the PC
	13.8.12 General notes about reading and writing memory
	13.8.13 Reading memory as words
	13.8.14 Writing memory as words
	13.8.15 Reading memory as halfwords or bytes
	13.8.16 Writing memory as halfwords/bytes
	13.8.17 Coprocessor register reads and writes
	13.8.18 Reading coprocessor registers
	13.8.19 Writing coprocessor registers

	13.9 Programming debug events
	13.9.1 Reading registers using scan chain 7
	13.9.2 Writing registers using scan chain 7
	13.9.3 Setting breakpoints, watchpoints and vector catches
	13.9.4 Setting software breakpoints

	13.10 Monitor debug-mode debugging
	13.10.1 Receiving data from the core
	13.10.2 Sending data to the core

	Trace Interface Port
	14.1 About the ETM interface
	14.1.1 Instruction interface
	14.1.2 Data address interface
	14.1.3 Data value interface
	14.1.4 Pipeline advance interface
	14.1.5 Coprocessor interface
	14.1.6 Other connections to the core

	Cycle Timings and Interlock Behavior
	15.1 About cycle timings and interlock behavior
	15.1.1 Changes in instruction flow overview
	15.1.2 Definition of terms
	15.1.3 Instruction execution overview
	15.1.4 Conditional instructions
	15.1.5 Opposite condition code checks

	15.2 Register interlock examples
	15.3 Data processing instructions
	15.3.1 Cycle counts if destination is not the PC
	15.3.2 Cycle counts if destination is the PC
	15.3.3 Example interlocks
	Shifter
	Register controlled shifts

	15.4 QADD, QDADD, QSUB, and QDSUB instructions
	15.5 ARMv6 media data processing
	15.6 ARMv6 Sum of Absolute Differences (SAD)
	15.6.1 Example interlocks

	15.7 Multiplies
	15.8 Branches
	15.9 Processor state updating instructions
	15.10 Single load and store instructions
	15.10.1 Base register update

	15.11 Load and store double instructions
	15.12 Load and store multiple instructions
	15.12.1 Load and store multiples, other than load multiples including the PC
	15.12.2 Load multiples, where the PC is in the register list
	15.12.3 Example interlocks

	15.13 RFE and SRS instructions
	15.14 Synchronization instructions
	15.15 Coprocessor instructions
	15.16 SWI, BKPT, Undefined, and Prefetch Aborted instructions
	15.17 Thumb instructions

	Introduction to VFP
	16.1 About the VFP11 coprocessor
	16.2 Applications
	16.3 Coprocessor interface
	16.4 VFP11 coprocessor pipelines
	16.4.1 FMAC pipeline
	FMAC pipeline instructions

	16.4.2 DS pipeline
	DS pipeline instructions

	16.4.3 LS pipeline
	LS pipeline instructions

	16.5 Modes of operation
	16.5.1 Full-compliance mode
	16.5.2 Flush-to-zero mode
	16.5.3 Default NaN mode
	16.5.4 RunFast mode

	16.6 Short vector instructions
	16.7 Parallel execution of instructions
	16.8 VFP11 treatment of branch instructions
	16.9 Writing optimal VFP11 code
	16.10 VFP11 revision information

	VFP Register File
	17.1 About the register file
	17.2 Register file internal formats
	17.2.1 Integer data format
	17.2.2 Single-precision data format
	17.2.3 Double-precision data format

	17.3 Decoding the register file
	17.4 Loading operands from MPCore registers
	17.5 Maintaining consistency in register precision
	17.6 Data transfer between memory and VFP11 registers
	17.7 Access to register banks in CDP operations
	17.7.1 About register banks
	17.7.2 Operations using register banks
	Scalar-only instructions
	Short vector-only instructions
	Short vector instructions with scalar source
	Scalar instructions in short vector mode

	VFP Programmers Model
	18.1 About the programmers model
	18.2 Compliance with the IEEE 754 standard
	18.2.1 An IEEE 754 standard-compliant implementation
	18.2.2 Complete implementation of the IEEE 754 standard
	18.2.3 IEEE 754 standard implementation choices
	Supported formats
	NaN handling
	Comparisons
	Underflow
	Exceptions

	18.3 ARMv5TE coprocessor extensions
	18.3.1 FMDRR
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	18.3.2 FMRRD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	18.3.3 FMSRR
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	18.3.4 FMRRS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	18.4 VFP11 system registers
	18.4.1 Floating-Point System ID Register, FPSID
	18.4.2 Floating-Point Status and Control Register, FPSCR
	Vector length and stride control

	18.4.3 Floating-point exception register, FPEXC
	18.4.4 Instruction registers, FPINST and FPINST2
	18.4.5 Media and VFP Feature Register 0
	18.4.6 Media and VFP Feature Register 1

	VFP Instruction Execution
	19.1 About instruction execution
	19.2 Serializing instructions
	19.3 Interrupting the VFP11 coprocessor
	19.4 Forwarding
	19.5 Hazards
	19.6 Operation of the scoreboards
	19.6.1 Scoreboard operation when an instruction bounces
	19.6.2 Single-precision source register locking
	19.6.3 Single-precision source register clearing
	19.6.4 Double-precision source register locking
	19.6.5 Double-precision source register clearing
	Instructions with one-cycle throughput
	Instructions with two-cycle throughput

	19.7 Data hazards in full-compliance mode
	19.7.1 Status register RAW hazard example
	19.7.2 Load multiple-CDP RAW hazard example
	19.7.3 Load multiple-short vector CDP RAW hazard example
	19.7.4 CDP-CDP RAW hazard example
	19.7.5 Short vector CDP-load multiple WAR hazard example

	19.8 Data hazards in RunFast mode
	19.8.1 Short vector CDP-load multiple WAR hazard example

	19.9 Resource hazards
	19.9.1 Load multiple-load-CDP resource hazard example
	19.9.2 Load multiple-short vector CDP resource hazard example
	19.9.3 Short vector CDP-CDP resource hazard example

	19.10 Parallel execution
	19.11 Execution timing

	VFP Exception Handling
	20.1 About exception processing
	20.2 Bounced instructions
	20.2.1 Potential or actual exception that the VFP11 coprocessor cannot handle
	20.2.2 Potential or actual exception with the exception enable bit set

	20.3 Support code
	20.3.1 Illegal instructions

	20.4 Exception processing
	20.4.1 Determination of the trigger instruction
	20.4.2 Exception processing for CDP scalar instructions
	20.4.3 Exception processing for CDP short vector instructions
	20.4.4 Examples of exception detection for vector instructions

	20.5 Input Subnormal exception
	20.5.1 Exception enabled
	20.5.2 Exception disabled

	20.6 Invalid Operation exception
	20.6.1 Exception enabled
	20.6.2 Exception disabled

	20.7 Division by Zero exception
	20.7.1 Exception enabled
	20.7.2 Exception disabled

	20.8 Overflow exception
	20.8.1 Exception enabled
	20.8.2 Exception disabled

	20.9 Underflow exception
	20.9.1 Exception enabled
	20.9.2 Exception disabled

	20.10 Inexact exception
	20.10.1 Exception enabled
	20.10.2 Exception disabled

	20.11 Input exceptions
	20.12 Arithmetic exceptions
	20.12.1 FADD and FSUB
	20.12.2 FCMP, FCMPZ, FCMPE, and FCMPEZ
	20.12.3 FMUL and FNMUL
	20.12.4 FMAC, FMSC, FNMAC, and FNMSC
	20.12.5 FDIV
	20.12.6 FSQRT
	20.12.7 FCPY, FABS, and FNEG
	20.12.8 FCVTDS and FCVTSD
	20.12.9 FUITO and FSITO
	20.12.10 FTOUI, FTOUIZ, FTOSI, and FTOSIZ

	Signal Descriptions
	A.1 AXI interface signals
	A.1.1 Master port 0
	A.1.2 Master port 1

	A.2 Interrupt lines
	A.3 Debug interface
	A.4 MBIST interface
	A.5 Power control interface
	A.6 Miscellaneous signals
	A.7 Scan test signals
	A.8 ETM interface signals
	A.9 Parity signals

	AC Characteristics
	B.1 MPCore timing
	B.2 MPCore signal timing parameters
	B.2.1 Registered signals
	B.2.2 Unregistered signals

	MBIST Controller and Dispatch Unit
	C.1 About MBIST
	C.2 MBIST controller and MBIST dispatch unit
	C.2.1 MBIST Instruction Register

	C.3 MBIST controller
	C.4 MBIST dispatch unit
	C.4.1 Address scrambler

	C.5 MBIST signal descriptions
	C.5.1 MBIST tester and MBIST controller signals
	MBISTRESULT values

	C.5.2 Controller and dispatch unit signals
	C.5.3 MBIST dispatch unit and MPCore signals

	C.6 Shift register and fail datalog format
	C.7 Fail data log
	C.8 Testing RAM
	C.9 Testing MP11 CPU RAMs
	C.9.1 Testing MP11 Dside data RAM
	C.9.2 Testing MP11 Dside tag RAM
	C.9.3 Testing MP11 Iside data RAM
	C.9.4 Testing MP11 Iside tag RAM
	C.9.5 Testing MP11 data dirty RAM
	C.9.6 Testing MP11 TLB RAM
	C.9.7 Testing MP11 BTAC RAM

	C.10 Testing MP11 SCU RAM
	C.11 Test patterns

	Scan chain ordering with RVI
	D.1 Scan chain ordering with RVI

	IEM
	E.1 Purpose of IEM
	E.1.1 Structure of IEM
	E.1.2 Operation of IEM
	E.1.3 Use of IEM

	E.2 About AXI register slices

	Revisions
	Glossary

